Anti-Robinson Structures for Analyzing Three-Way Two-Mode Proximity Data

Show more

References

[1] Hubert, L.J., Arabie, P. and Meulman, J. (2006) The Structural Representation of Proximity Matrices with MATLAB. SIAM, Philadelphia.

[2] Carroll, J.D. and Arabie, P. (1980) Multidimensional Scaling. Annual Review of Psychology, 31, 607-649.

http://dx.doi.org/10.1146/annurev.ps.31.020180.003135

[3] Carroll, J.D. (1976) Spatial, Non-Spatial and Hybrid Models for Scaling. Psychometrika, 41, 439-463.

http://dx.doi.org/10.1007/BF02296969

[4] Carroll, J.D. and Pruzansky, S. (1980) Discrete and Hybrid Scaling Models. In: Lantermann, E. and Feger, H., Eds., Similarity and Choice, Huber, Bern, 108-139.

[5] Carroll, J.D., Clark, L.A. and DeSarbo, W.S. (1984) The Representation of Three-Way Proximities Data by Single and Multiple Tree Structure Models. Journal of Classification, 1, 25-74.

http://dx.doi.org/10.1007/BF01890116

[6] Hubert, L.J. and Arabie, P. (1995) Iterative Projection Strategies for the Least-Squares Fitting of Tree Structures to Proximity Data. British Journal of Mathematical and Statistical Psychology, 48, 281-317.

http://dx.doi.org/10.1111/j.2044-8317.1995.tb01065.x

[7] Robinson, W.S. (1951) A Method for Chronologically Ordering Archaeological Deposits. American Antiquity, 19, 293301.

http://dx.doi.org/10.2307/276978

[8] Hubert, L.J. and Arabie, P. (1994) The Analysis of Proximity Matrices through Sums of Matrices Having (Anti-)Robinson Forms. British Journal of Mathematical and Statistical Psychology, 47, 1-40.

http://dx.doi.org/10.1111/j.2044-8317.1994.tb01023.x

[9] Rendl, F. (2002) The Quadratic Assignment Problem. In: Drezner, Z. and Hamacher, H.W., Eds., Facility Location, Springer, Berlin, 439-457.

http://dx.doi.org/10.1007/978-3-642-56082-8_14

[10] Hubert, L.J., Arabie, P. and Meulman, J. (2001) Combinatorial Data Analysis: Optimization by Dynamic Programming. SIAM, Philadelphia.

http://dx.doi.org/10.1137/1.9780898718553

[11] Brusco, M.J. (2002) A Branch-and-Bound Algorithm for Fitting Anti-Robinson Structures to Symmetric Dissimilarities Matrices. Psychometrika, 67, 459-471.

http://dx.doi.org/10.1007/BF02294996

[12] Brusco, M.J. and Stahl, S. (2005) Branch-and-Bound Applications in Combinatorial Data Analysis. Springer, New York.

[13] Dykstra, R.L. (1983) An Algorithm for Restricted Least-Squares Regression. Journal of the American Statistical Association, 78, 837-842.

http://dx.doi.org/10.1080/01621459.1983.10477029

[14] Deutsch, F. (2001) Best Approximation in Inner Product Spaces. Springer, New York.

http://dx.doi.org/10.1007/978-1-4684-9298-9

[15] Boyle, J.P. and Dykstra, R.L. (1985) A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces. In: Dykstra, R.L., Robertson, R. and Wright, F.T., Eds., Advances in Order Restricted Inference (Vol. 37), Lecture Notes in Statistics, Springer, Berlin, 28-47.

[16] Brusco, M.J. (2002) Integer Programming Methods for Seriation and Unidimensional Scaling of Proximity Matrices: A Review and Some Extensions. Journal of Classification, 19, 45-67.

http://dx.doi.org/10.1007/s00357-001-0032-z

[17] Hubert, L.J. and Arabie, P. (1986) Unidimensional Scaling and Combinatorial Optimization. In: de Leeuw, J., Meulman, J., Heiser, W. and Critchley, F., Eds., Multidimensional Data Analysis, DSWO Press, Leiden, 181-196.

[18] Hubert, L.J. and Arabie, P. (1988) Relying on Necessary Conditions for Optimization: Unidimensional Scaling and Some Extensions. In: Bock, H.H., Ed., Classification and Related Methods of Data Analysis, Elsevier, Amsterdam, 463-472.

[19] Barthélemy, J.P. and Guénoche, A. (1991) Tree and Proximity Representations. Wiley, Chichester.

[20] Tversky, A. and Krantz, D. (1969) Similarity of Schematic Faces: A Test of Interdimensional Additivity. Perception and Psychophysics, 5, 124-128.

http://dx.doi.org/10.3758/BF03210535

[21] Defays, D. (1978) A Short Note on a Method of Seriation. British Journal of Mathematical and Statistical Psychology, 31, 49-53.

http://dx.doi.org/10.1111/j.2044-8317.1978.tb00571.x