Pricing Credit Default Swap under Fractional Vasicek Interest Rate Model

Show more

References

[1] R. A. Jarrow and S. M. Turnbull, “Pricing Derivatives on Financial Securities Subject to Credit risk,” Journal of Finance, Vol. 50, No. 1, 1995, pp. 53-85.

http://dx.doi.org/10.1111/j.1540-6261.1995.tb05167.x

[2] J. D. Duffie and K. J. Singleton, “Modeling Term Structures of Defaultable Bonds,” Review of Financial Studies, Vol. 12, No. 4, 1999, pp. 687-720. http://dx.doi.org/10.1093/rfs/12.4.687

[3] D. Lando, “On Cox processes and credit risky securities,” The Review Derivatives Research, Vol. 2, No. 2, 1998, pp. 99-120.

http://dx.doi.org/10.1007/BF01531332

[4] D. Duffie, et al., “Transform Analysis and Asset Pricing for Affine Jump Diffusions,” Econometrica, Vol. 68, No. 6, 2000, pp. 1343-1376. http://dx.doi.org/10.1111/1468-0262.00164

[5] S. J. Lin, “Stochastic Analysis of Fractional Brownian Motion, Fractional Noises and Applications,” SIAM Review, Vol. 10, 1995, pp. 422-437.

[6] L. Decreusefond and A. S. Ustunel, “Stochastic Analysis of the Fractional Brownian Motion,” Potential Analysis, Vol. 10, 1999, pp. 177-214. http://dx.doi.org/10.1023/A:1008634027843

[7] L. C. G. Rogers, “Arbitrage with Fractional Brownian Motion,” Mathematical Finance, Vol. 7, No. 1, 1997, pp. 95-105.

http://dx.doi.org/10.1111/1467-9965.00025

[8] T. E. Duncan, Y. Hu and B. Pasik-Duncan, “Stochastic Calculus for Fractional Brownian Motion, I. Theory,” SIAM Journal on Control and Optimization, Vol. 38, No. 2, 2000, pp. 582-612.

http://dx.doi.org/10.1137/S036301299834171X

[9] Y. Hu, B. Oksendal and A. Sulem, “Optimal Portfolio in a Fractional Black-Scholes Market,” In: S. Albeverio, et al., Eds, Mathematical Physics and Stochastic Analysis, World Scientific, Singapore City, 2000.

[10] Y. Hu and B. Oksendal, “Fractional White Noise Calculus and Application to Finance,” Infinite Dimensional Analysis, Quantum Probability and Related Topics, Vol. 6, No. 1, 2003, pp. 1-32.

[11] W. L. Huang, X. X. Tao and S. H. Li, “Pricing Formulae for European Option under the Fractional Vasicek Interest Rate Model,” Acta Mathematica Sinica (in Chinese), Vol. 55, No. 2, 2012, pp. 219-230.

[12] M. Davis and V. Lo, “Infectious Defaults,” Quantitive Finance, Vol. 1, No. 4, 1999, pp. 382-387.

http://dx.doi.org/10.1080/713665832

[13] R. A. Jarrow and F. Yu, “Counterparty Risk and the Pricing of Defaultable Securities,” Journal of Finance, Vol. 56, No. 5, 2001, pp. 1765-1799. http://dx.doi.org/10.1111/0022-1082.00389

[14] S. Y. Leung and Y. K. Kwork, “Credit Default Swap Valuation with Counterparty Risk,” Kyoto Economic Review, Vol. 74, No. 1, 2005, pp. 25-45.

[15] Y. F. Bai, X. H. Hu and Z. X. Ye, “A Model for Dependent Default with Hyperbolic Attenuation Effect and Valuation of Credit Default Swap,” Applied Mathematics and Mechanics (English Edition), Vol. 28, No. 12, 2007, pp. 1643-1649.

http://dx.doi.org/10.1007/s10483-007-1211-9

[16] R. L. Hao and Z. X. Ye, “The Intensity Model for Pricing Credit Securities with Jumpdiffusion and Counterparty Risk,” Mathematical Problems in Engineering, Vol. 10, 2011, pp. 1-16.

[17] R. L. Hao and Z. X. Ye, “Pricing CDS with Jump-Diffusion Risk in the Intensity-Based Model,” Advances in Intelligent and Soft Computing, Vol. 100, 2011, pp. 221-229. http://dx.doi.org/10.1007/978-3-642-22833-9_26