Back
 GM  Vol.4 No.1 , January 2014
Major Elements Geochemistry of Sedimentary Rocks from Corumbataí Formation, Santa Gertrudes Ceramic Pole, São Paulo, Brazil
Abstract: We conducted a geochemical study of the major elements of 29 clay samples from 10 mining fronts, which are used for ceramic coatings at Santa Gertrudes Ceramic Pole, São Paulo, Brazil. This region is considered as the biggest ceramic pole in Latin America. The mines are located in Corumbataí Formation (Paraná Sedimentary Basin) and are mined in bench system. The samples were analyzed as a whole and along each profile to evaluate the variation of the concentration of major elements and weathering effects. The results show a differentiation into three groups: 1) carbonate clays; 2) lower portion samples; 3) upper portion samples, and properties that allow obtaining useful information about the use and selection of raw materials to the formulation of ceramic masses and for quality control of raw materials in order to achieve products of similar quality.
Cite this paper: M. Margarita Torres Moreno, R. Raphael da Rocha and L. Hirata Godoy, "Major Elements Geochemistry of Sedimentary Rocks from Corumbataí Formation, Santa Gertrudes Ceramic Pole, São Paulo, Brazil," Geomaterials, Vol. 4 No. 1, 2014, pp. 11-17. doi: 10.4236/gm.2014.41002.
References

[1]   R. R. Rocha, “Propriedades Químico-Mineralógicas e Ceramicas de Rochas da Formacao Corumbataí: Aplicacao na Diversificacao de Produtos,” Ph.D. Thesis, Paulista StateUniversity, Rio Claro, 2012.

[2]   V. J. Fúlfaro and A. Bjornberg, “Solos do Interior de Sao Paulo,” EDUSP, Sao Paulo, 1983.

[3]   E. J. Milani, A. B. Franca and R. L. Schneider, “Bacia do Paraná,” Boletim de Geociências da Petrobrás, Vol. 8, No. 1,1994, pp. 69-82.

[4]   M. M. T. Moreno, “Argilas: Composicao Mineralógica, Distribuicao Granulométrica e Consistência de Pastas,” Associate Professorship Thesis, Paulista State University, Rio Claro, 2012.

[5]   M. M. T. Moreno, D. Bartolomeu and R. H. C. Lima, “Análise do Comportamento de Queima de Argilas e Formulacoes para Revestimento Ceramico,” Ceramica, Vol. 55, No. 335, 2009, pp. 286-295.
http://dx.doi.org/10.1590/S0366-69132009000300008

[6]   H. Rollinson, “Using Geochemical Data: Evaluation, Presentation, Interpretation,” Longman, Singapore, 1994.

[7]   B. Velde, “Origin and Mineralogy of Clays,” Springer, Berlin, 1995.
http://dx.doi.org/10.1007/978-3-662-12648-6

[8]   K. B. Krauskopf, D. K. Bird, “Introduction to Geochemistry”, McGraw-Hill, New York, 1995.

[9]   S. R. Christofoletti and M. M. T. Moreno, “Análise Quantitativa de Albita e sua Distribuicao em Perfis de Argilas da Formacao Corumbataí na regiao do Pólo Ceramico de Santa Gertrudes-SP, Brasil,” Ceramica Industrial, Vol. 18, No. 2, 2013, pp. 17-22.

[10]   G. Faure, “Principles and Aplications of Inorganic Geochemistry,” Prentice Hall, Upper Saddle River, 1991.

[11]   L. H. Godoy, M. M. T. Moreno and A. Zanardo, “Caracterizacao da Matéria Prima Ceramica da Mina Tabajara (Limeira, SP),” Ceramica, Vol. 57, No. 344, 2011, pp. 474-482.
http://dx.doi.org/10.1590/S0366-69132011000400016

[12]   S. R. Christofoletti, M. M. T. Moreno and A. Batezelli, “Análise de Fácies da Formacao Corumbataí (Grupo passa Dois, Bacia do Paraná, Neopermiano), com Vista ao Emprego na Indústria de Revestimento Ceramico”, Revista Brasileira de Geociências, Vol. 36, No. 3, 2006, pp. 488-498.

[13]   A. Meunier and B. Velde, “Illite,” Springer, New York, 2004.

[14]   J. B. Dixon, R. C. Dinauer and S. B. Weed, “Minerals in Soil Enviroments,” Soil Science Society of America, Madison, 1977.

 
 
Top