Back
 JAMP  Vol.2 No.1 , January 2014
Numerical Solution to Boundary Layer Problems over Moving Flat Plate in Non-Newtonian Media
Abstract: Our aim is to investigate the solutions to the boundary layer problem of a power-law non-Newtonian fluid along an impermeable sheet moving with a constant velocity in an otherwise quiescent fluid environment. In the absence of an exact solution in closed form, numerical solutions for the velocity distribution in the boundary layer for different power exponents will be presented. Our goal is to give an iterative transformation method for the determination of the skin friction parameter and the boundary layer thickness for different parameter values and the dependence of the skin friction parameter and the boundary layer thickness on the power exponent are examined.
Cite this paper: Bognár, G. and Csáti, Z. (2014) Numerical Solution to Boundary Layer Problems over Moving Flat Plate in Non-Newtonian Media. Journal of Applied Mathematics and Physics, 2, 8-13. doi: 10.4236/jamp.2014.21002.
References

[1]   T. Altan, S. Oh and H. Gegel, “Metal Forming Fundamentals and Applications,” American Society of Metals, Metals Park, 1979.

[2]   E. G. Fisher, “Extrusion of Plastics,” John Wiley, New York, 1976.

[3]   Z. Tadmor and I. Klein, “Engineering Principles of Plasticating Extrusion, Polymer Science and Engineering Series,” Van Norstrand Reinhold, New York, 1970.

[4]   B. C. Sakiadis, “Boundary Layer Behavior on Continuous Solid Surfaces: I. Boundary Layer Equations for Two-Dimensional and Axisymmetric Flow,” AIChE Journal, Vol. 7, 1961, pp. 26-28. http://dx.doi.org/10.1002/aic.690070108

[5]   F. Tsou, E. M. Sparrow and R. Goldstein, “Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface,” International Journal of Heat and Mass Transfer, Vol. 10, 1967, pp. 219-235. http://dx.doi.org/10.1016/0017-9310(67)90100-7

[6]   B. C. Sakiadis, “Boundary Layer Behavior on Continuous Solid Surfaces. II: The Boundary Layer on a Continuous Flat Surface, AIChE Journal, Vol. 7, 1961, pp. 221-225. http://dx.doi.org/10.1002/aic.690070211

[7]   M. Y. Hussaini, W. D. Lakin and A. Nachman, “On Similarity Solutions of a Boundary Layer Problem with an Upstream Moving Wall,” SIAM Journal on Applied Mathematics, Vol. 47, 1987, pp. 699-709. http://dx.doi.org/10.1137/0147048

[8]   A. Nachman and A. J. Callegari, “A Nonlinear Singular Boundary Value Problem in the Theory of Pseudoplastic Fluids,” SIAM Journal on Applied Mathematics, Vol. 38, 1980, pp. 275-281. http://dx.doi.org/10.1137/0138024

[9]   M. Benlahsen, M. Guedda and R. Kersner, “The Generalized Blasius Equation Revisited,” Mathematical and Computer Model- ling, Vol. 47, 2008, pp. 1063-1076. http://dx.doi.org/10.1016/j.mcm.2007.06.019

[10]   A. Acrivos, M. J. Shah and E. E. Peterson, “Momentum and Heat Transfer in Laminar Boundary Flow of Non-Newtonian Fluids past External Surfaces,” AIChE Journal, Vol. 6, 1960, pp. 312-317. http://dx.doi.org/10.1002/aic.690060227

[11]   H. Weyl, “On the Differential Equations of the Simplest Boundary-Layer Problems,” Annals of Mathematics, Vol. 43, 1942, pp. 381-407. http://dx.doi.org/10.2307/1968875

[12]   H. Blasius, “Grenzschichten in Flussigkeiten mit Kleiner Reibung,” Zeitschrift für angewandte Mathematik und Physik, Vol. 56, 1908, pp. 1-37.

[13]   K. Töpfer, “Bemerkung zu dem Aufsatz von H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung,” Zeitschrift für angewandte Mathematik und Physik, Vol. 60, 1912, pp. 397-398.

[14]   G. Bognár, “Similarity Solutions of Boundary Layer Flow for Non-Newtonian Fluids,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 10, 2010, pp. 1555-1566. http://dx.doi.org/10.1515/IJNSNS.2009.10.11-12.1555

[15]   G. Bognár, “Iterative Transformation Method for the Boundary Layer Problems of Non-Newtonian Fluid Flows along Moving Surfaces, to Appear.”

[16]   A. J. Callegari and M. B. Friedman, “An Analytical Solution of a Nonlinear, Singular Boundary Value Problem in the Theory of Viscous Flows,” Journal of Mathematical Analysis and Applications, Vol. 21, 1968, pp. 510-529. http://dx.doi.org/10.1016/0022-247X(68)90260-6

[17]   M. Y. Hussaini and W. D. Lakin, “Existence and Nonuniqueness of Similarity Solutions of a Boundary-Layer Problem,” Quarterly Journal of Mechanics & Applied Mathematics, Vol. 39, 1986, pp. 177-191. http://dx.doi.org/10.1093/qjmam/39.1.15

[18]   R. Fazio, “A Novel Approach to the Numerical Solution of Boundary Value Problems on Infinite Intervals,” Journal on Numerical Analysis, Vol. 33, 1996, pp. 1473-1483. http://dx.doi.org/10.1137/S0036142993252042

[19]   R. Fazio, “The Iterative Transformation Method for the Sakiadis Problem,” 2011. http://mat521.unime.it/fazio/preprints/Sakiadis.pdf

 
 
Top