FNS  Vol.5 No.1 , January 2014
The Agronomic Techniques as Determinants of the Phenolic Content and the Biological Antioxidant Effect of Palm-Tree Kale
Abstract: The content of phytochemicals in vegetables is strongly affected by genetic, agronomic, and environmental factors, and by transportation and storage conditions, potentially affecting the sensory and putative health-promoting properties. In this study the impact of different agricultural techniques on the phenolics content and antioxidant activity of extracts from a traditional Italian kale landrace, called palm-tree kale (Brassica oleracea L., ssp. acephala DC, var. sabellica L.) was evaluated. Furthermore, the antioxidant effects of the different extracts were assessed in a biological system using primary cultures of neonatal rat cardiomyocytes. The final aim was to evidence whether and how the agronomic practices can affect the antioxidant properties of kale not only in vitro but also in cells. Results herein reported underline the influence of the crop production strategies in establishing the potential health benefits of a vegetable. This research approach could be useful for the selection of production techniques that are able to provide edible vegetables with higher functional activity, and evidences the need to study the food domain as a whole with the nutrition domain, and to integrate all results in order to have an overall “foodomics” vision allowing the improvement of health and well-being.
Cite this paper: Danesi, F. , Valli, V. , Elementi, S. and D’Antuono, L. (2014) The Agronomic Techniques as Determinants of the Phenolic Content and the Biological Antioxidant Effect of Palm-Tree Kale. Food and Nutrition Sciences, 5, 1-7. doi: 10.4236/fns.2014.51001.

[1]   N. Hounsome, B. Hounsome, D. Tomos and G. EdwardsJones, “Plant Metabolites and Nutritional Quality of Vegetables,” Journal of Food Science, Vol. 73, No. 4, 2008, pp. R48-R65.

[2]   M. Schreiner, “Vegetable Crop Management Strategies to Increase the Quantity of Phytochemicals,” European Journal of Nutrition, Vol. 44, No. 2, 2005, pp. 85-94.

[3]   A. Podsedek, “Natural Antioxidants and Antioxidant Capacity of Brassica Vegetables: A Review,” LWT— Food Science and Technology, Vol. 40, No. 1, 2007, pp. 1-11.

[4]   B. Watzl and C. Leitzmann. “Other Biologically Active Substances in Plant foods: Phytochemicals,” In: J. Mann and S. Truswell, Eds., Essentials of Human Nutrition, Oxford University Press, Oxford, 2012, pp. 254-264.

[5]   P. M. Kris-Etherton, K. D. Hecker, A. Bonanome, S. M. Coval, A. E. Binkoski, K. F. Hilpert, A. E. Griel and T. D. Etherton, “Bioactive Compounds in Foods: Their Role in the Prevention of Cardiovascular Disease and Cancer,” The American Journal of Medicine, Vol. 113, No. 9, 2002, pp. 71-88.

[6]   P. Soengas, M. E. Cartea, M. Francisco, T. Sotelo and P. Velasco, “New Insights into Antioxidant Activity of Brassica Crops,” Food Chemistry, Vol. 134, No. 2, 2012, pp. 725-733.

[7]   E. G. Rogan, “The Natural Chemopreventive Compound Indole-3-Carbinol: State of the Science,” In Vivo, Vol. 20, No. 2, 2006, pp. 221-228.

[8]   R. H. Liu, “Health Benefits of Fruit and Vegetables Are from Additive and Synergistic Combinations of Phytochemicals,” The American Journal of Clinical Nutrition, Vol. 78, Suppl. 3, 2003, pp. 517S-520S.

[9]   L. F. D’Antuono and R. Neri, “Characterisation and Potential New Uses of Palm Tree Kale (Brassica Oleracea L., ssp. Acephala DC, Var. Sabellica L.),” Acta Horticulturae, Vol. 459, 1998, pp. 97-104.

[10]   A. C. Kurilich, G. J. Tsau, A. Brown, L. Howard, B. P. Klein, E. H. Jeffery, M. Kushad, M. A. Wallig and J. A. Juvik, “Carotene, Tocopherol, and Ascorbate Contents in Subspecies of Brassica oleracea,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 4, 1999, pp. 15761581.

[11]   E. Sikora, E. Cieslik, T. Leszczyńska, A. Filipiak-Florkiewicz and P. M. Pisulewski, “The Antioxidant Activity of Selected Cruciferous Vegetables Subjected to Aquathermal Processing,” Food Chemistry, Vol. 107, No. 1, 2008, pp. 55-59.

[12]   S. F. Hagen, G. I. A. Borge, K. A. Solhaug and G. B. Bengtsson, “Effect of Cold Storage and Harvest Date on Bioactive Compounds in Curly Kale (Brassica oleracea L. var. acephala),” Postharvest Biology and Technology, Vol. 51, No. 1, 2009, pp. 36-42.

[13]   M. Zietz, A. Weckmuller, S. Schmidt, S. Rohn, M. Schreiner, A. Krumbein and L. W. Kroh, “Genotypic and Climatic Influence on the Antioxidant Activity of Flavonoids in Kale (Brassica oleracea var. sabellica),” Journal of Agricultural and Food Chemistry, Vol. 58, No. 4, 2010, pp. 2123-2130.

[14]   F. Ferioli, E. Giambanelli, L. F. D’Antuono, H. S. Costa, T. G. Albuquerque, A. S. Silva, O. Hayran and B. Kocaoglu, “Comparison of Leafy Kale Populations from Italy, Portugal, and Turkey for Their Bioactive Compound Content: Phenolics, Glucosinolates, Carotenoids, and Chlorophylls,” Journal of the Science of Food and Agriculture, Vol. 93, No. 14, 2013, pp. 3478-3489.

[15]   D. J. Kornbrust and R. D. Mavis, “Relative Susceptibility of Microsomes from Lung, Heart, Liver, Kidney, Brain and Testes to Lipid Peroxidation: Correlation with Vitamin E Content,” Lipids, Vol. 15, No. 5, 1980, pp. 315322.

[16]   D. Heimler, P. Vignolini, M. G. Dini, F. F. Vincieri and A. Romani, “Antiradical Activity and Polyphenol Composition of Local Brassicaceae Edible Varieties,” Food Chemistry, Vol. 99, No. 3, 2006, pp. 464-469.

[17]   R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, “Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay,” Free Radical Biology & Medicine, Vol. 26, No. 9-10, 1999, pp. 1231-1237.

[18]   F. Danesi, S. Elementi, R. Neri, M. Maranesi, L. F. D’Antuono and A. Bordoni, “Effect of Cultivar on the Protection of Cardiomyocytes from Oxidative Stress by Essential Oils and Aqueous Extracts of Basil (Ocimum basilicum L.),” Journal of Agricultural and Food Chemistry, Vol. 56, No. 21, 2008, pp. 9911-9917.

[19]   S. Yagev, M. Heller and A. Pinson, “Changes in Cytoplasmic and Lysosomal Enzyme Activities in Cultured Rat Heart Cells: The Relationship to Cell Differentiation and Cell Population in Culture,” In Vitro, Vol. 20, No. 12, 1984, pp. 893-898.

[20]   C. Legrand, J. M. Bour, C. Jacob, J. Capiaumont, A. Martial, A. Marc, M. Wudtke, G. Kretzmer, C. Demangel, D. Duval, et al., “Lactate Dehydrogenase (LDH) Activity of the Cultured Eukaryotic Cells as Marker of the Number of Dead Cells in the Medium,” Journal of Biotechnology, Vol. 25, No. 3, 1992, pp. 231-243.

[21]   T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods, Vol. 65, No. 1-2, 1983, pp. 55-63.

[22]   R. Doll, “An Overview of the Epidemiological Evidence Linking Diet and Cancer,” The Proceedings of the Nutrition Society, Vol. 49, No. 2, 1990, pp. 119-131.

[23]   T. J. Key, “Fruit and Vegetables and Cancer Risk,” British Journal of Cancer, Vol. 104, No. 1, 2011, pp. 6-11.

[24]   S. N. Bhupathiraju, N. M. Wedick, A. Pan, J. E. Manson, K. M. Rexrode, W. C. Willett, E. B. Rimm and F. B. Hu, “Quantity and Variety in Fruit and Vegetable Intake and Risk of Coronary Heart Disease,” The American Journal of Clinical Nutrition, Vol. 98, No. 6, 2013, pp. 15141523.

[25]   L. M. Oude Griep, J. M. Geleijnse, D. Kromhout, M. C. Ocke and W. M. Verschuren, “Raw and Processed Fruit and Vegetable Consumption and 10-Year Coronary Heart Disease Incidence in a Population-Based Cohort Study in the Netherlands,” PLoS One, Vol. 5, No. 10, 2010, Article ID: e13609.

[26]   L. Dauchet, P. Amouyel, S. Hercberg and J. Dallongeville, “Fruit and Vegetable Consumption and Risk of Coronary Heart Disease: A Meta-Analysis of Cohort Studies,” The Journal of Nutrition, Vol. 136, No. 10, 2006, pp. 25882593.

[27]   N. Khan, M. Monagas, M. Urpi-sarda, R. Llorach and C. Andres-Lacueva, “Contribution of Bioactive Foods and Their Emerging Role in Immunomodulation, Inflammation, and Arthritis,” In: R. R. Watson and V. R. Preedy, Eds., Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, Academic Press, San Diego, 2013, pp. 43-65.

[28]   T. Jorgensen, S. Capewell, E. Prescott, S. Allender, S. Sans, T. Zdrojewski, D. De Bacquer, J. de Sutter, O. H. Franco, S. Logstrup, M. Volpe, S. Malyutina, P. Marques-Vidal, Z. Reiner, G. S. Tell, W. M. Verschuren, D. Vanuzzo and on Behalf of the PEP Section of the EACPR, “Population-Level Changes to Promote Cardiovascular Health,” European Journal of Preventive Cardiology, Vol. 20, No. 3, 2013, pp. 409-421.

[29]   D. Mozaffarian and S. Capewell, “United Nations’ Dietary Policies to Prevent Cardiovascular Disease,” BMJ, Vol. 343, 2011, Article ID: d5747.

[30]   P. Scarborough, K. E. Nnoaham, D. Clarke, S. Capewell and M. Rayner, “Modelling the Impact of a Healthy Diet on Cardiovascular Disease and Cancer Mortality,” Journal of Epidemiology and Community Health, Vol. 66, No. 5, 2012, pp. 420-426.

[31]   H. Boeing, A. Bechthold, A. Bub, S. Ellinger, D. Haller, A. Kroke, E. Leschik-Bonnet, M. J. Müller, H. Oberritter, M. Schulze, P. Stehle and B. Watzl, “Critical Review: Vegetables and Fruit in the Prevention of Chronic Diseases,” European Journal of Nutrition, Vol. 51, No. 6, 2012, pp. 637-663.

[32]   P. Malagoli, P. Laine, L. Rossato and A. Ourry, “Dynamics of Nitrogen Uptake and Mobilization in Field-Grown Winter Oilseed Rape (Brassica napus) from Stem Extension to Harvest. II. An 15N-Labelling-Based Simulation Model of N Partitioning between Vegetative and Reproductive Tissues,” Annals of Botany, Vol. 95, No. 7, 2005, pp. 1187-1198.

[33]   J. Witzell and A. Shevtsova, “Nitrogen-Induced Changes in Phenolics of Vaccinium myrtillus—Implications for Interaction with a Parasitic Fungus,” Journal of Chemical Ecology, Vol. 30, No. 10, 2004, pp. 1937-1956.

[34]   C. Sousa, D. M. Pereira, J. A. Pereira, A. Bento, M. A. Rodrigues, S. Dopico-Garcia, P. Valentao, G. Lopes, F. Ferreres, R. M. Seabra and P. B. Andrade, “Multivariate Analysis of Tronchuda Cabbage (Brassica oleracea L. var. costata DC) Phenolics: Influence of Fertilizers,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 6, 2008, pp. 2231-2239.

[35]   M. Bjorkman, I. Klingen, A. N. Birch, A. M. Bones, T. J. Bruce, T. J. Johansen, R. Meadow, J. Molmann, R. Seljasen, L. E. Smart and D. Stewart, “Phytochemicals of Brassicaceae in Plant Protection and Human Health— Influences of Climate, Environment and Agronomic Practice,” Phytochemistry, Vol. 72, No. 7, 2011, pp. 538-556.

[36]   H. Olsen, S. Grimmer, K. Aaby, S. Saha and G. I. Borge, “Antiproliferative Effects of Fresh and Thermal Processed Green and Red Cultivars of Curly Kale (Brassica oleracea L. Convar. acephala var. sabellica),” Journal of Agricultural and Food Chemistry, Vol. 60, No. 30, 2012, pp. 7375-7383.

[37]   D. Boivin, S. Lamy, S. Lord-Dufour, J. Jackson, E. Beaulieu, M. Coté, A. Moghrabi, S. Barrette, D. Gingras and R. Béliveau, “Antiproliferative and Antioxidant Activities of Common Vegetables: A Comparative Study,” Food Chemistry, Vol. 112, No. 2, 2009, pp. 374-380.

[38]   F. Capozzi and A. Bordoni, “Foodomics: A New Comprehensive Approach to Food and Nutrition,” Genes & Nutrition, Vol. 8, No. 1, 2013, pp. 1-4.