[1] S. Mindess, J. F. Young and D. Darwin, “Concrete,” 2nd Edition, Prentice-Hall, Upper Saddle River, 2003.
[2] I. Odler, “Lea’s Chemistry of Cement and Concrete,” 4th Edition, Arnold Publishers, London, 1998, pp. 241-297.
[3] A. Sedaghat, A. Zayed and P. Sandberg, “Measurement and Prediction of Heat of Hydration of Portland Cement Using Isothermal Conduction Calorimetry,” Journal of Testing and Evaluation, Vol. 41, No. 6, 2013, 8 p.
http://dx.doi.org/10.1520/JTE20120272
[4] M. Azenha and R. Faria, “Temperatures and Stresses due to Cement Hydration on the R/C Foundation of a Wind Tower—A Case Study,” Engineering Structures, Vol. 30, No. 9, 2008, pp. 2392-2400.
http://dx.doi.org/10.1016/j.engstruct.2008.01.018
[5] A. K. Schindler, “Concrete Hydration, Temperature Development, and Setting at Early-Ages,” Ph.D. Dissertation, University of Texas at Austin, Austin, 2002.
[6] H. Alkhateb, A. Al-Ostaz, A.-D. Cheng and X. Li, “Materials Genome for Graphene-Cement Nanocomposites,” Journal of Nanomechanics and Micromechanics, Vol. 3, No. 3, 2013, pp. 67-77.
http://dx.doi.org/10.1061/(ASCE)NM.2153-5477.0000055
[7] J. Makar, J. Margeson and J. Luh, “In Carbon Nanotube/ Cement Composites-Early Results and Potential Applications,” Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, 22-24 August 2005, pp. 1-10.
[8] M. Vandamme and F. J. Ulm, “Nanogranular Origin of Concrete Creep,” Proceedings of the National Academy of Sciences, Vol. 106, No. 26, 2009, pp. 10552-10557.
http://dx.doi.org/10.1073/pnas.0901033106
[9] F. Ulm, “Green Concrete: Nanoengineered Materials Could Reduce Greenhouse-Gas Emissions,” Technology Review, Vol. 110, No. 4, 2007, pp. 27-29.
[10] H. E. Cardenas, “Nanomaterials in Concrete: Advances in Protection, Repair, and Upgrade,” DEStech Publications, Inc., Lancaster, 2012.
[11] A. Peyvandi, P. Soroushian, N. Abdol and A. M. Bala Chandra, “Surface-Modified Graphite Nanomaterials for Improved Reinforcement Efficiency in Cementitious Paste,” Carbon, Vol. 63, 2013, pp. 175-186.
http://dx.doi.org/10.1016/j.carbon.2013.06.069
[12] S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu and Q. Zhou, “Effect of Graphene Oxide Nanosheets of Microstructure and Mechanical Properties of Cement Composites,” Construction and Building Materials, Vol. 49, 2013, pp. 121-127. http://dx.doi.org/10.1016/j.conbuildmat.2013.08.022
[13] M. V. Diamanti, M. Ormellese and M. P. Pedeferri, “Characterization of Photocatalytic and Superhydrophilic Properties of Mortars Containing Titanium Dioxide,” Cement and Concrete Research, Vol. 38, No. 11, 2008, pp. 1349-1353.
http://dx.doi.org/10.1016/j.cemconres.2008.07.003
[14] D. Chung, “Comparison of Submicron-Diameter Carbon Filaments and Conventional Carbon Fibers as Fillers in Composite Materials,” Carbon, Vol. 39, No. 8, 2001, pp. 1119-1125.
http://dx.doi.org/10.1016/S0008-6223(00)00314-6
[15] M. Morsy, S. Alsayed and M. Aqel, “Hybrid Effect of Carbon Nanotube and Nano-clay on Physico-Mechanical Properties of Cement Mortar,” Construction and Building Materials, Vol. 25, No. 1, 2011, pp. 145-149.
http://dx.doi.org/10.1016/j.conbuildmat.2010.06.046
[16] S. Musso, J.-M. Tulliani, G. Ferro and A. Tagliaferro, “Influence of Carbon Nanotubes Structure on the Mechanical Behavior of Cement Composites,” Composites Science and Technology, Vol. 69, No. 11-12, 2009, pp. 1985-1990. http://dx.doi.org/10.1016/j.compscitech.2009.05.002
[17] I. Campillo, A. Guerrero, J. S. Dolado, A. Porro, J. A. Ibáñez and S. Goñi, “Improvement of Initial Mechanical Strength by Nanoalumina in Belite Cements,” Materials Letters, Vol. 61, No. 8, 2007, pp. 1889-1892.
http://dx.doi.org/10.1016/j.matlet.2006.07.150
[18] Z. Li, H. Wang, S. He, Y. Lu and M. Wang, “Investigations on the Preparation and Mechanical Properties of the Nano-Alumina Reinforced Cement Composite,” Materials Letters, Vol. 60, No. 3, 2006, pp. 356-359.
http://dx.doi.org/10.1016/j.matlet.2005.08.061
[19] H. Li, M. Zhang and J. Ou, “Abrasion Resistance of Concrete Containing Nano-Particles for Pavement,” Wear, Vol. 260, No. 11, 2006, pp. 1262-1266.
http://dx.doi.org/10.1016/j.wear.2005.08.006
[20] H. Li, M. Zhang and J. Ou, “Flexural Fatigue Performance of Concrete Containing Nano-Particles for Pavement,” International Journal of Fatigue, Vol. 29, No. 7, 2007, pp. 1292-1301.
http://dx.doi.org/10.1016/j.ijfatigue.2006.10.004
[21] Y. Qing, Z. Zenan, K. Deyu and C. Rongshen, “Influence of Nano-SiO2 Addition on Properties of Hardened Cement Paste as Compared with Silica Fume,” Construction and Building Materials, Vol. 21, No. 3, 2007, pp. 539-545. http://dx.doi.org/10.1016/j.conbuildmat.2005.09.001
[22] J. Vera-Agullo, V. Chozas-Ligero, D. Portillo-Rico, M. García-Casas, A. Gutiérrez-Martínez, J. Mieres-Royo and J. Grávalos-Moreno, “Mortar and Concrete Reinforced with Nanomaterials,” Nanotechnology in Construction, Vol. 3, 2009, pp. 383-388.
[23] W. Wei and X. Qu, “Extraordinary Physical Properties of Functionalized Graphene,” Small, Vol. 8, No. 14, 2012, pp. 2138-2151. http://dx.doi.org/10.1002/smll.201200104
[24] K. M. F. Shahil and A. A. Balandin, “Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials,” Solid State Communications, Vol. 152, No. 15, 2012, pp. 1331-1340.
http://dx.doi.org/10.1016/j.ssc.2012.04.034
[25] A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik and D. N. Krasikov, “Graphene: Fabrication Methods and Thermophysical Properties, Physics-Uspekhi, Vol. 54, No. 3 2011, pp. 227-258.
http://dx.doi.org/10.3367/UFNe.0181.201103a.0233
[26] P. A. Basnayaka, M. K. Ram, E. K. Stefanakos and A. Kumar, “Supercapacitors Based on Graphene-Polyaniline Derivative Nanocomposite Electrode Materials,” Electrochimica Acta, Vol. 92, 2013, pp. 376-382.
http://dx.doi.org/10.1016/j.electacta.2013.01.039
[27] H. Gómez, M. K. Ram, F. Alvi, P. Villalba, E. L. Stefanakos and A. Kumar, “Graphene-Conducting Polymer Nanocomposite as Novel Electrode for Supercapacitors,” Journal of Power Sources, Vo. 196, No. 8, 2011, pp. 4102-4108. http://dx.doi.org/10.1016/j.jpowsour.2010.11.002
[28] F. Alvi, M. K. Ram, P. A. Basnayaka, E. Stefanakos, Y. Goswami and A. Kumar, “GraphenePolyethylenedioxythiophene Conducting Polymer Nanocomposite Based Supercapacitor,” Electrochimica Acta, Vol. 56, No. 25, 2011, pp. 9406-9412.
http://dx.doi.org/10.1016/j.electacta.2011.08.024
[29] “Standard Test Method forMeasurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal ConductionCalorimetry,” ASTM C1702-09a, ASTM International, 2012,
[30] P. S. Gaal, M. A. Thermitus and D. E. Stroe, “Thermal Conductivity Measurements using the Flash Method,” Journal of Thermal Analysis and Calorimetry, Vol. 78, No. 1, 2004, pp. 185-189.
http://dx.doi.org/10.1023/B:JTAN.0000042166.64587.33
[31] “Standard Specification for Portland Cement,” ASTM C150, ASTM International, 2012.
[32] W. K. Brown and K. H. Wohletz, “Derivation of the Weibull Distribution Based on Physical Principles and its Connection to the Rosin-Rammler and Lognormal Distributions,” Journal of Applied Physics, Vol. 78, No. 4, 1995, pp. 2758-2763. http://dx.doi.org/10.1063/1.360073