OJPsych  Vol.4 No.1 , January 2014
Females with schizophrenia have abnormal functional cortical connectivity in the gamma frequency during an auditory oddball task using magnetoencephalography

We studied differences in imaginary coherence (IC) of the gamma band between brain regions of female schizophrenia patients during the auditory oddball task using magnetoencephalography (MEG). Subjects were 12 right-handed female schizophrenia patients, who were evaluated by the Positive and Negative Syndrome Scales (PANSS). Functional connectivity during an auditory oddball task was reconstructed in low gamma (30 - 50 Hz) and high gamma (50 - 100 Hz and 100 - 150 Hz) bands, and represented by IC using seeds determined by the significant oscillatory power changes obtained by event-related synchronization (ERS) and event-related desynchronization (ERD) power measurements. Gamma ERS (30 - 50 Hz) power was decreased in the left precuneus at 500 - 750 ms and in the right precuneus at 750 - 1000 ms. IC in the gamma band (50 - 100 Hz) was decreased between the right precuneus (seed) and right paracentral lobule (target) and between the right precuneus and right hypothalamus at 0 - 250 ms. IC in the gamma band (100 - 150 Hz) was increased between the left precuneus and right cuneus (Brodmann area 7) at 250 - 500 ms, between the left precuneus and right culmen at 500 - 750 ms, and between the left precuneus and right cuneus (Brodmann area 17), between the left precuneus and right posterior cingulate cortex, and between the left precuneus and right caudate nucleus at 750 - 1000 ms. In the high gamma band (50 - 100 Hz) at 0 - 250 ms, significant positive correlations were shown between IC and conceptual disorganization in PANSS scores, between IC and unusual thought content score, and between IC and positive scale score. IC within the high gamma band in female schizophrenia patients showed two types of functional disconnection, intrahemispheric and interhemispheric. IC between the right or left precuneus and other specific cortical areas showed dysfunction, suggesting that the parietal lobe plays an important role in dysfunction in connectivity in the gamma band during the oddball task.

Cite this paper
Fujimoto, T. , Okumura, E. , Takeuchi, K. , Kodabashi, A. , Otsubo, T. , Nakamura, K. , Sekine, M. , Kamiya, S. , Higashi, Y. , Shimooki, S. and Tamura, T. (2014) Females with schizophrenia have abnormal functional cortical connectivity in the gamma frequency during an auditory oddball task using magnetoencephalography. Open Journal of Psychiatry, 4, 24-38. doi: 10.4236/ojpsych.2014.41005.
[1]   Fries, P. (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual review of Neuroscience, 32, 209-224. http://dx.doi.org/10.1146/annurev.neuro. 051508.135603

[2]   Uhlhaas, P.J. and Singer, W. (2012) Neuronal dynamics and neuropsychiatric disorders: Toward a translational paradigm for dysfunctional large-scale networks. Neuron, 75, 963-980.

[3]   Gray, C.M., Konig, P., Engel, A.K. and Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature, 338, 334-337. http://dx.doi.org/10.1038/338334a0

[4]   Gray, C.M. and McCormick, D.A. (1996) Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science, 274, 109-113.

[5]   Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P. and Andersen, R.A. (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience, 5, 805-811. http://dx.doi.org/10.1038/nn890

[6]   Fries, P., Neuenschwander, S., Engel, A.K., Goebel, R. and Singer, W. (2001a) Rapid feature selective neuronal synchronization through correlated latency shifting. Nature Neuroscience, 4, 194-200. http://dx.doi.org/10.1038/84032

[7]   Fries, P., Reynolds, J.H., Rorie, A.E. and Desimone, R. (2001b) Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560-1563. http://dx.doi.org/10.1126/ science.1055465

[8]   Grützner, C., Uhlhaas, P.J., Genc, E., Kohler, A., Singer, W. and Wibral, M. (2010) Neuroelectromagnetic correlates of perceptual closure processes. The Journal of Neuroscience, 30, 8342-8352. http://dx.doi.org/10.1523/JNEUROSCI.5434-09.2010

[9]   Siegel, M., Donner, T.H., Oostenveld, R., Fries, P. and Engel, A.K. (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron, 60, 709-719. http://dx.doi.org/10.1016/j.neuron.2008.09.010

[10]   Wyart, V. and Tallon-Baudry, C. (2008) Neural dissociation between visual awareness and spatial attention. The Journal of Neuroscience, 28, 2667-2679. http://dx.doi.org/10.1523/JNEUROSCI.4748-07.2008

[11]   Kaiser, J., Heidegger, T., Wibral, M., Altmann, C.F. and Lutzenberger, W. (2008) Distinct gamma-band components reflect the short-term memory maintenance of different sound lateralization angles. Cerebral Cortex, 18, 2286-2295. http://dx.doi.org/10.1093/cercor/bhm251

[12]   Vidal, J.R., Chaumon, M., O’Regan, J.K. and Tallon-Baudry, C. (2006) Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals. Journal of Cognitive Neuroscience, 18, 1850-1862.

[13]   Womelsdorf, T., Schoffelen, J.M., Oostenveld, R., Singer, W., Desimone, R., Engel, A.K. and Fries, P. (2007) Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609-1612. http://dx.doi.org/10.1126/science.1139597

[14]   Buzsáki, G. and Silva, F.L. (2012) High frequency oscillations in the intact brain. Progress in Neurobiology, 98, 241-249. http://dx.doi.org/10.1016/j.pneurobio.2012.02.004

[15]   Uhlhaas, P.J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikoli?, D. and Singer, W. (2009) Neural synchrony in cortical networks: History, concept and current status. Frontiers in Integrative Neuroscience, 3, 17. http://dx.doi.org/10.3389/neuro.07.017.2009

[16]   Spencer, K.M., Salisbury, D.F., Shenton, M.E. and McCarley, R.W. (2008) Gamma-band auditory steady-state responses are impaired in first episode psychosis. Biological Psychiatry, 64, 369-375. http://dx.doi.org/10.1016/j.biopsych.2008.02.021

[17]   Kwon, J.S., O’Donnell, B.F., Wallenstein, G.V., Greene, R.W., Hirayasu, Y., Nestor, P.G., Hasselmo, M.E., Potts, G.F., Shenton, M.E. and McCarley, R.W. (1999) Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Archives of General Psychiatry, 56, 1001-1005.

[18]   Lee, K.H., Williams, L.M., Haig, A. and Gordon, E. (2003) “Gamma (40 Hz) phase synchronicity” and symptom dimensions in schizophrenia. Cognitive Neuropsychiatry, 8, 57-71. http://dx.doi.org/10. 1080/713752240

[19]   Slewa-Younan, S., Gordon, E., Harris, A.W., Haig, A.R., Brown, K.J., Flor-Henry, P. and Williams, L.M. (2004) Sex differences in functional connectivity in first-episode and chronic schizophrenia patients. The American Journal of Psychiatry, 161, 1595-1602. http://dx.doi.org/10.1176/appi.ajp.161.9.1595

[20]   Symond, M.B., Harris, A.W., Gordon, E. and Williams, L.M. (2005) “Gamma synchrony” in first-episode schizophrenia: A disorder of temporal connectivity? The American Journal of Psychiatry, 162, 459-465. http://dx.doi.org/10.1176/appi.ajp.162.3.459

[21]   Light, G.A., Hsu, J.L., Hsieh, M.H., Meyer-Gomes, K., Sprock, J., Swerdlow, N.R. and Braff, D.L. (2006) Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biological Psychiatry, 60, 1231-1240. http://dx.doi.org/10.1016/j.biopsych.2006.03.055

[22]   Uhlhaas, P.J. and Singer, W. (2006) Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52, 155-168. http://dx.doi.org/10.1016/j.neuron. 2006.09.020

[23]   Uhlhaas, P.J., Haenschel, C., Nikolic, D. and Singer, W. (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophrenia Bulletin, 34, 927-943. http://dx.doi.org/10.1093/schbul/sbn062

[24]   Uhlhaas, P.J. and Singer, W. (2010a) Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11, 100-113. http://dx.doi.org/10.1038/nrn2774

[25]   Uhlhaas, P.J., Roux, F., Rodriguez, E., Rotarska-Jagiela, A. and Singer, W. (2010b) Neural synchrony and the development of cortical networks. Trends in Cognitive Sciences, 14, 72-80.

[26]   Spencer, K.M., Niznikiewicz, M.A., Nestor, P.G., Shenton, M.E. and McCarley, R.W. (2009) Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia. BMC Neuroscience, 10, 85. http://dx.doi.org/10.1186/1471-2202-10-85

[27]   Uhlhaas, P.J., Pipa, G., Neuenschwander, S., Wibral, M. and Singer, W. (2011) A new look at gamma? High(>60 Hz) γ-band activity in cortical networks: Function, mechanisms and impairment. Progress in Biophysics and Molecular Biology, 105, 14-28. http://dx.doi.org/10.1016/j.pbiomolbio.2010.10.004

[28]   Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., Berger, M.S., Barbaro, N.M. and Knight, R.T. (2006) High gamma power is phaselocked to theta oscillations in human neocortex. Science, 313, 1626-1628. http://dx.doi.org/10.1126/science.1128115

[29]   Canolty, R.T. and Knight, R.T. (2010) The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14, 506-515. http://dx.doi.org/10.1016/j.tics.2010.09.001

[30]   Jensen, O. and Colgin, L.L. (2007) Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences, 11, 267-269. http://dx.doi.org/10.1016/j.tics.2007.05.003

[31]   Palva, J.M., Palva, S. and Kaila, K. (2005) Phase synchrony among neuronal oscillations in the human cortex. The Journal of Neuroscience, 25, 3962-3972. http://dx.doi.org/10.1523/JNEUROSCI.4250-04.2005

[32]   Fries, P. (2005) A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474-480. http://dx.doi.org/10.1016/j.tics.2005.08.011

[33]   Gray, C.M. and Viana, Di Prisco, G. (1997) Stimulusdependent neuronal oscillations and local synchronization in striate cortex of the alert cat. The Journal of Neuroscience, 17, 3239-3253.

[34]   Walla, P., Hufnagl, B., Lindinger, G., Deecke, L. and Lang, W. (2001) Physiological evidence of gender differences in word recognition: A magnetoencephalographic (MEG) study. Cognitive Brain Research, 12, 49-54. http://dx.doi.org/10.1016/S0926-6410(01)00028-3

[35]   Reite, M., Sheeder, J., Teale, P., Richardson, D., Adams, M. and Simon, J. (1995) MEG based brain laterality: Sex differences in normal adults. Neuropsychologia, 33, 1607-1616.

[36]   Jausovec, N. and Jausovec, K. (2009) Do women see things differently than men do? Neuroimage, 45, 198-207. http://dx.doi.org/10.1016/j.neuroimage.2008.11.013

[37]   Slewa-Younan, S., Gordon, E., Williams, L., Haig, A.R. and Goldberg, E. (2001) Sex differences, gamma activity and schizophrenia. The International Journal of Neuroscience, 107, 131-144. http://dx.doi.org/10.3109/00207450109149762

[38]   Fujimoto, T., Okumura, E., Takeuchi, K., Kodabashi, A., Otsubo, T., Nakamura, K., Kamiya, S., Higashi, Y., Yuji, T., Honda, K., Shimooki, S. and Tamura, T. (2013) Dysfunctional cortical connectivity during the auditory oddball task in patients with schizophrenia. The Open Neuroimaging Journal, 7, 15-26. http://dx.doi.org/10.2174/1874440001307010015

[39]   Crone, N.E., Miglioretti, D.L., Gordon, B. and Lesser, R.P. (1998a) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain, 121, 2301-2315. http://dx.doi.org/10.1093/brain/121.12.2301

[40]   Crone, N.E., Miglioretti, D.L., Gordon, B., Sieracki, J.M., Wilson, M.T., Uematsu, S. and Lesser, R.P. (1998b) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain, 121, 2271-2299.

[41]   Crone, N.E., Boatman, D., Gordon, B. and Hao, L. (2001a) Induced electrocorticographic gamma activity during auditory perception. Clinical Neurophysiology, 112, 565-582. http://dx.doi.org/10. 1016/S1388-2457(00)00545-9

[42]   Crone, N.E., Hao, L., Hart Jr., J., Boatman, D., Lesser, R.P., Irizarry, R. and Gordon, B. (2001b) Electrocorticographic gamma activity during word production in spoken and sign language. Neurology, 57, 2045-2053. http://dx.doi.org/10.1212/WNL.57.11.2045

[43]   Ohara, S., Ikeda, A., Kunieda, T., Yazawa, S., Baba, K., Nagamine, T., Taki, W., Hashimoto, N., Mihara, T. and Shibasaki, H. (2000) Movement-related change of electrocorticographic activity in human supplementary motor area proper. Brain, 123, 1203-1215. http://dx.doi.org/10.1093/brain/123. 6.1203

[44]   Pfurtscheller, G., Graimann, B., Huggins, J.E., Levine, S.P. and Schuh, L.A. (2003) Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clinical Neurophysiology, 114, 1226-1236. http://dx.doi.org/10.1016/S1388-2457 (03)00067-1

[45]   Crone, N.E., Sinai, A. and Korzeniewska, A. (2006) Highfrequency gamma oscillations and human brain mapping with electrocorticography. Progress in Brain Research, 159, 275-295.

[46]   Kay, S.R., Fiszbein, A. and Opler, L.A. (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13, 261-276. http://dx.doi.org/10.1093/schbul/13.2.261

[47]   Robinson, S.E. and Vrba, J. (1999) Functional neuroimaging by synthetic aperture magnetometry (SAM). In: T. Yoshimoto, M. Kotani, S. Kuriki, H. Karibe and N. Nakasato, Eds., Recent Advances in Biomagnetism, Tohoku University Press, Sendai, 302-305.

[48]   Sekihara, K., Nagarajan, S.S., Poeppel, D. and Marantz, A. (2004) Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Transactions on Bio-Medical Engineering, 51, 1726-1734. http://dx.doi.org/10.1109/TBME.2004.827926

[49]   Sekihara, K., Hild, K.E., Dalal, S.S. and Nagarajan, S.S. (2008) Performance of prewhitening beamforming in MEG dual experimental conditions. IEEE Transactions on Bio-Medical Engineering, 55, 1112-1121. http://dx.doi.org/10.1109/TBME.2008.915726

[50]   Dalal, S.S., Guggisberg, A.G., Edwards, E., Sekihara, K., Findlay, A.M., Canolty, R.T., Berger, M.S., Knight, R.T., Barbaro, N.M., Kirsch, H.E. and Nagarajan, S.S. (2008) Five-dimensional neuroimaging: Localization of the time-frequency dynamics of cortical activity. Neuroimage, 40, 1686-1700. http://dx.doi.org/10.1016/j.neuroimage.2008.01.023

[51]   Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S. and Hallett, M. (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115, 2292-2307. http://dx.doi.org/10.1016/j.clinph.2004.04.029

[52]   Sekihara, K., Owen, J.P., Trisno, S. and Nagarajan, S.S. (2011) Removal of spurious coherence in MEG sourcespace coherence analysis. IEEE Transactions on Bio-Medical Engineering, 58, 3121-3129. http://dx.doi.org/10.1109/TBME.2011.2162514

[53]   Perez, V.B., Roach, B.J., Woods, S.W., Srihari, V.H., McGlashan, T.H., Ford, J.M. and Mathalon, D.H. (2013) Early auditory gamma-band responses in patients at clinical high risk for schizophrenia. Supplements to Clinical Neurophysiology, 62, 147-162. http://dx.doi.org/10.1016/B978-0-7020-5307-8.00010-7

[54]   Wang, L., Zhu, Z. and Bastiaansen, M. (2012) Integration or predictability? A further specification of the functional role of gamma oscillations in language comprehension. Frontiers in Psychology, 3, 187. http://dx.doi.org/10.3389/fpsyg.2012.00187

[55]   Matsunaga, T., Katayama, Y., Hayami, T. and Iramina, K. (2008) Measurements of the micro/beta ERD and gamma ERS during the imagination of body parts movement. Conference Proceedings—IEEE Engineering in Medicine and Biology Society, 2008, 4130-4133. http://dx.doi.org/10.1109/IEMBS. 2008.4650118

[56]   Margulies, D.S., Vincent, J.L., Kelly, C., Lohmann, G., Uddin, L.Q., Biswal, B.B., Villringer, A., Castellanos, F.X., Milham, M.P. and Petrides, M. (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proceedings of the National Academy of Sciences of the United States of America, 106, 20069-20074. http://dx.doi.org/10.1073/pnas.0905314106

[57]   Shannon, B.J. and Buckner, R.L. (2004) Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. The International Journal of Neuroscience, 24, 10084-10092. http://dx.doi.org/10.1523/JNEURO SCI.2625-04.2004

[58]   Rutter, L., Carver, F.W., Holroyd, T., Nadar, S.R., Mitchell-Francis, J., Apud, J., Weinberger, D.R. and Coppola, R. (2009) Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Human Brain Mapping, 30, 3254-3264. http://dx.doi.org/10.1002/hbm. 20746

[59]   González-Hernández, J.A., Pita-Alcorta, C., Castaneda, H., Trujillo-Barreto, N. and Scherbaum, W.A. (2009) BET differences among simultaneous evoked frequency band responses during early-stage visual processing distinguish schizophrenia from healthy subjects. Neuroscience Letters, 450, 7-11. http://dx.doi.org/10.1016/j.neulet.2008.10.109

[60]   Brent, B.K., Seidman, L.J., Thermenos, H.W., Holt, D.J. and Keshavan, M.S. (2013) Self-disturbances as a possible premorbid indicator of schizophrenia risk: A neurodevelopmental perspective. Schizophrenia Research, in press. http://dx.doi.org/10.1016/j.schres.2013.07.038

[61]   Zhou, Y., Liang, M., Tian, L., Wang, K., Hao, Y., Liu, H., Liu, Z. and Jiang, T. (2007) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophrenia Research, 97, 194-205. http://dx.doi.org/10.1016/j.schres.2007.05.029

[62]   Tu, P.C., Lee, Y.C., Chen, Y.S., Li, C.T. and Su, T.P. (2013) Schizophrenia and the brain’s control network: Aberrant withinand between-network connectivity of the frontoparietal network in schizophrenia. Schizophrenia Research, 147, 339-347. http://dx.doi.org/10.1016/j.schres.2013. 04.011

[63]   Takahashi, T., Suzuki, M., Velakoulis, D., Lorenzetti, V., Soulsby, B., Zhou, S.Y., Nakamura, K., Seto, H., Kurachi, M. and Pantelis, C. (2009) Increased pituitary volume in schizophrenia spectrum disorders. Schizophrenia Research, 108, 114-121. http://dx.doi.org/10.1016/j.schres.2008.12.016

[64]   Szymańska, M., Budziszewska, B., Jaworska-Feil, L., Basta-Kaim, A., Kubera, M., Leskiewicz, M., Regulska, M. and Lasoń, W. (2009a) The effect of antidepressant drugs on the HPA axis activity, glucocorticoid receptor level and FKBP51 concentration in prenatally stressed rats. Psychoneuroendocrinology, 34, 822-832. http://dx.doi.org/10.1016/j.psyneuen.2008.12.012

[65]   Szymańska, M., Suska, A., Budziszewska, B., Jaworska-Feil, L., Basta-Kaim, A., Leskiewicz, M., Kubera, M., Gergont, A., Kroczka, S., Kaciński, M. and Lasoń, W. (2009b) Prenatal stress decreases glycogen synthase kinase-3 phosphorylation in the rat frontal cortex. Pharmacological Reports, 61, 612-620.

[66]   Basta-Kaim, A., Budziszewska, B., Leskiewicz, M., Fijal, K., Regulska, M., Kubera, M., Wedzony, K. and Lasoń, W. (2011) Hyperactivity of the hypothalamus-pituitaryadrenal axis in lipopolysaccharide-induced neurodevelopmental model of schizophrenia in rats: Effects of antipsychotic drugs. European Journal of Pharmacology, 650, 586-595. http://dx.doi.org/10.1016/j.ejphar.2010.09.083

[67]   Belvederi Murri, M., Pariante, C.M., Dazzan, P., Hepgul, N., Papadopoulos, A.S., Zunszain, P., Di Forti, M., Murray, R.M. and Mondelli. V. (2012) Hypothalamic-pituitary-adrenal axis and clinical symptoms in first-episode psychosis. Psychoneuroendocrinology, 37, 629-644. http://dx.doi.org/10.1016/j. psyneuen.2011.08.013

[68]   Tognin, S., Rambaldelli, G., Perlini, C., Bellani, M., Marinelli, V., Zoccatelli, G., Alessandrini, F., Pizzini, F.B., Beltramello, A., Terlevic, R., Tansella, M., Balestrieri, M. and Brambilla, P. (2012) Enlarged hypothalamic volumes in schizophrenia. Psychiatry Research, 204, 75-81. http://dx.doi.org/10. 1016/j.pscychresns.2012.10.006

[69]   Picard, H., Amado, I., Mouchet-Mages, S., Olié, J.P. and Krebs, M.O. (2008) The role of the cerebellum in schizophrenia: An update of clinical, cognitive, and functional evidences. Schizophrenia bulletin, 34, 155-172. http://dx.doi.org/10.1093/schbul/sbm049

[70]   Katsetos, C.D., Hyde, T.M. and Herman, M.M. (1997) Neuropathology of the cerebellum in schizophrenia—An update: 1996 and future directions. Biological Psychiatry, 42, 213-224.

[71]   Andreasen, N.C., Nopoulos, P., O’Leary, D.S., Miller, D.D., Wassink, T. and Flaum, M. (1999) Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms. Biological Psychiatry, 46, 908-920. http://dx.doi.org/10.1016/S0006-3223(99)00152-3

[72]   Kanaan, R.A., Borgwardt, S., McGuire, P.K., Craig, M.C., Murphy, D.G., Picchioni, M., Shergill, S.S., Jones, D.K. and Catani, M. (2009) Microstructural organization of cerebellar tracts in schizophrenia. Biological Psychiatry, 66, 1067-1069. http://dx.doi.org/10.1016/j.biopsych.2009.07.028

[73]   Stoodley, C.J. and Schmahmann, J.D. (2009) Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage, 44, 489-501. http://dx.doi.org/10.1016/j. neuroimage.2008.08.039

[74]   Schmahmann, J.D. and Sherman, J.C. (1998) The cerebellar cognitive affective syndrome. Brain, 121, 561-579. http://dx.doi.org/10.1093/brain/121.4.561

[75]   Levisohn, L., Cronin-Golomb, A. and Schmahmann, J.D. (2000) Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain, 123, 1041-1050. http://dx.doi.org/10.1093/brain/123.5.1041

[76]   Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C.F., Menon, V. and Greicius, M.D. (2009) Distinct cerebellar contributions to intrinsic connectivity networks. The International Journal of Neuroscience, 29, 8586-8594. http://dx.doi.org/10.1523/JNEUROSCI.1868-09.2009

[77]   Collin, G., Hulshoff Pol, H.E., Haijma, S.V., Cahn, W., Kahn, R.S. and van den Heuvel, M.P. (2011) Impaired cerebellar functional connectivity in schizophrenia patients and their healthy siblings. Frontiers in Psychiatry, 2, 73. http://dx.doi.org/10.3389/fpsyt.2011.00073

[78]   Liu, H., Fan, G., Xu, K. and Wang, F. (2011) Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: A combined resting-state functional MRI and diffusion tensor imaging study. Journal of Magnetic Resonance Imaging, 34, 1430-1438. http://dx.doi.org/ 10.1002/jmri.22784

[79]   Okugawa, G., Nobuhara, K., Minami, T., Takase, K., Sugimoto, T., Saito, Y., Yoshimura, M. and Kinoshita, T. (2006) Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia: A diffusion tensor imaging study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 30, 1408-1412. http://dx.doi.org/10.1016/j.pnpbp. 2006.05.014

[80]   Chen, Y.L., Tu, P.C., Lee, Y.C., Chen, Y.S., Li, C.T. and Su, T.P. (2013) Resting-state fMRI mapping of cerebellar functional dysconnections involving multiple large-scale networks in patients with schizophrenia. Schizophrenia Research, 149, 26-34. http://dx.doi.org/10.1016/j.schres.2013.05.029

[81]   Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J. and Sporns, O. (2008) Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159. http://dx.doi.org/ 10.1371/journal.pbio.0060159

[82]   Leech, R., Kamourieh, S., Beckmann, C.F. and Sharp, D.J. (2011) Fractionating the default mode network: Distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. The International Journal of Neuroscience, 31, 3217-3224. http://dx.doi.org/10. 1523/JNEUROSCI.5626-10.2011

[83]   Hayden, B.Y., Smith, D.V. and Platt, M.L. (2009) Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 106, 5948-5953. http://dx.doi.org/10.1073/pnas.0812035106

[84]   Szpunar, K.K., Watson, J.M. and McDermott, K.B. (2007) Neural substrates of envisioning the future. Proceedings of the National Academy of Sciences of the United States of America, 104, 642-647. http://dx.doi.org/10.1073/pnas.0610082104

[85]   Weissman, D.H., Roberts, K.C., Visscher, K.M. and Woldorff, M.G. (2006) The neural bases of momentary lapses in attention. Nature Neuroscience, 9, 971-978. http://dx.doi.org/10.1038/nn1727

[86]   Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A. and Shulman, G.L. (2001) A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676-682. http://dx.doi.org/10.1073/pnas.98.2.676

[87]   Quidé, Y., Morris, R.W., Shepherd, A.M., Rowland, J.E. and Green, M.J. (2013) Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia. Schizophrenia Research, in press. http://dx.doi.org/10.1016/j.schres.2013.08.009

[88]   Turner, J.A., Damaraju, E., van Erp, T.G., Mathalon, D.H., Ford, J.M., Voyvodic, J., Mueller, B.A., Belger, A., Bustillo, J., McEwen, S., Potkin, S.G., Fbirn and Calhoun, V.D. (2013) A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Frontires in Neuroscience, 7, 137. http://dx.doi.org/10.3389/fnins.2013.00137

[89]   Yu, R., Hsieh, M.H., Wang, H.L., Liu, C.M., Liu, C.C., Hwang, T.J., Chien, Y.L., Hwu, H.G. and Tseng, W.Y. (2013) Frequency dependent alterations in regional homogeneity of baseline brain activity in schizophrenia. PLoS One, 8, e57516. http://dx.doi.org/10.1371/journal.pone.0057516

[90]   Friston, K.J. (1998) The disconnection hypothesis. Schizophrenia Research, 30, 115-125. http://dx.doi.org/10.1016/S0920-9964(97)00140-0

[91]   Friston, K.J. (1999) Schizophrenia and the disconnection hypothesis. Acta Psychiatrica Scandinavica Supplementum, 395, 68-79. http://dx.doi.org/10.1111/j.1600-0447.1999.tb05985.x

[92]   Friston, K.J. (2011) Functional and effective connectivity: A review. Brain Connectivity, 1, 13-36. http://dx.doi.org/10.1089/brain.2011.0008.