OJIC  Vol.4 No.1 , January 2014
Molecular and electronic structure of several 2,3-dithienylquinoxalines and their 2:1 complexes with silver(I) nitrate
Abstract: We have synthesized three bis (thienyl) quinoxalinesilver(I) complexes; however, unlike analogous silver(I) complexes of pyridylquinoxaline that utilize (N, N) bidentate behavior from the quinoxaline and pyridyl ring nitrogens, the bis(thienyl) quinoxaline ligands did not utilize the bonding potential of the thienyl rings to give (N, S) bonding modes. PES spectra modeling of these ligands indicates that the preferential metal bonding via only the quinoxaline nitrogen atoms is due to the N-rich, but S-poor, characters of the frontier orbitals.
Cite this paper: Crundwell, G. , Cantalupo, S. , D. C. Foss, P. , McBurney, B. , Kopp, K. , L. Westcott, B. , Updegraff III, J. , Zeller, M. and D. Hunter, A. (2014) Molecular and electronic structure of several 2,3-dithienylquinoxalines and their 2:1 complexes with silver(I) nitrate. Open Journal of Inorganic Chemistry, 4, 10-17. doi: 10.4236/ojic.2014.41002.

[1]   Bi, W.-Y., Chai, W.-L., Lu, X.-Q., Song, J.-R. and Bao, F. (2009) Syntheses and supramolecular structures of silver (I) complexes based upon 2-(2’-pyridyl)-quinoxaline. Journal of Coordination Chemistry, 62, 1928-1938.

[2]   Bacchi, A., Bosetti, E., Carcelli, M., Pelagatti, P. and Rogolino, D. (2004) Deconvolution of supramolecular-tectons and analysis of the structural role of the anions for two “wheel-and-axle” silver complexes. Crystal Engineering Communications, 6, 177-183.

[3]   Bhogala, B.R., Thallapally, P.K. and Nangia, A. (2004) 1:2 and 1:1 Ag(I)-Isonicotinamide coordination compounds: Five-fold interpenetrated CdSO4 network and the first example of (pyridine)N-Ag-O(amide) bonds. Crystal Growth & Design, 4, 215-218.

[4]   Yaghi, O.M. and Li, H. (1996) T-shaped molecular building units in the porous structure of Ag(4,4’-bpy)×NO3. Journal of the American Chemical Society, 118, 295-296.

[5]   Carlucci, L., Ciani, G., Proserpio, D.M. and Sironi, A. (1995) 1-, 2-, and 3-dimensional polymeric frames in the coordination chemistry of AgBF4 with pyrazino. The first example of three interpenetrating 3-dimensional triconnected nets. Journal of the American Chemical Society, 117, 4562-4569.

[6]   Crundwell, G. (2013) Bis[2-(thiophen-2-yl)quinoxaline-kN4]silver(I) tetrafluoridoborate. Acta Crystallographica, E69, m164.

[7]   Yeh, C.-W., Chen, T.-R., Chen, J.-D. and Wang, J.-C. (2009) Roles of anion and solvent in the self-assembly of silver(I) complexes containing 2,3-diphenylquinoxaline. Crystal Growth & Design, 9, 2595-2603.

[8]   Fitchett, C.M. and Steel, P.J. (2008) Synthesis and X-ray crystal structures of metal complexes of three isomeric bibenzodiazines: Discrete and polymeric assemblies. Polyhedron, 27, 1527-1537.

[9]   Tong, M.-L., Chen, X.-M., Ye, B.-H. and Ng, S.W. (1998) Helical silver(I)-2,4’-bipyridine chains organized into 2-D networks by metal-counterion or metal-metal bonding. Structures of [Ag(2,4’-bipyridine)]X (X-=NO3- or ClO4-). Inorganic Chemistry, 37, 5278-5281.

[10]   Kole, G.K., Tan, G.K. and Vittal, J.J. (2012) Photoreactivity of Ag(I) complexes and coordination polymers of pyridyl acrylic acids. Crystal Growth & Design, 12, 326-332.

[11]   Chen, C.Y., Zeng, J.Y. and Lee, H.M. (2007) Argentophilic interaction and anionic control of supramolecular structures in simple silver pyridine complexes. Inorganica Chimica Acta, 360, 21-30.

[12]   Patra, G.K., Goldberg, I., De, S. and Datta, D. (2007) Effect of size of discrete anions on the nuclearity of a complex cation. Crystal Engineering Communications, 9, 828-832.

[13]   Raj, S.S.S., Fun, H.-K., Chen, X.-F., Zhu, X.-H. and You, X.-Z. (1999) [2-(2-Pyridyl-N)quinoxaline-N1]silver(I) nitrate. Acta Crystallographica, C55, 2035-2037.

[14]   Aakerroy, C.B. and Beatty, A.M. (1998) Supramolecular assembly of low-dimensional silver(I) architectures via amide-amide hydrogen bonds. Chemical Communications, 10, 1067-1068.

[15]   Amari, C., Ianelli, S., Pelizzi, C., Pelizzi, G. and Predieri, G. (1993) 2-(2’-Thienyl)pyridine versus 2,2’-bipyridyl binding mode in copper(II) complexes. Inorganica Chimica Acta, 211, 89-94.

[16]   Patra, S.K. and Bera, J.K. (2006) Axial interaction of the [Ru2(CO)4]2+ core with the aryl C-H bond: Route to cyclometalated compounds involving a metal-metal-bonded diruthenium unit. Organometallics, 25, 6054-6060.

[17]   McGee, K.A. and Mann, K.R. (2007) Selective low-temperature syntheses of facial and meridionaltris-cyclometalatediridium(III) complexes. Inorganic Chemistry, 46, 7800-7809.

[18]   Constable, E.C., Henney, R.P.G. and Tocher, D.A. (1991) Different bonding modes in octahedral complexes of 6-(2-thienyl)-2,2’-bipyridine (HL) with transitional metal ions: Crystal structures of [Ru(HL)(py)Cl3] (py=pyridine) and [Ru(HL)2Cl][BF4]×CH2Cl2. Journal of the Chemical Society, Dalton Transactions, 9, 2335-2347.

[19]   Trifonov, A.A, Shestakov, B.G., Gudilenkov, I.D., Fukin, G.K., Giambastiani, G., Bianchini, C., Rossin, A., Luconi, L., Filippi, J. and Sorace, L. (2011) Steric control on the redox chemistry of (h5-C9H7)2YbII(THF)2 by 6-aryl substituted iminopyridines. Dalton Transactions, 40, 10568-10575.

[20]   Majumdar, M., Patra, S.K., Kannan, M., Dunbar, K.R. and Bera, J.K. (2008) Role of axial donors in the ligand isomerization processes of quadruply bonded dimolybdenum(II) compounds. Inorganic Chemistry, 47, 2212-2222.

[21]   deFreitas, J. and Crundwell, G. (2013) 2,3-Bis(thiophene- 3-yl)quinoxaline. Acta Crystallographica, E69, o394.

[22]   Crundwell, G., Sayers, D., Herron, S.R. and Kantardjieff, K. (2003) 2,3-Dithien-2-ylquinoxaline. Acta Crystallographica, E59, o314-o315.

[23]   Crundwell, G., Linehan, J., Updegraff III, J.B., Zeller, M. and Hunter, A. (2004) 2,3-Bis-(5-bromothien-2-yl) quinoxaline. Acta Crystallographica, E60, o656-o657.

[24]   Crundwell, G., Sullivan, J., Pelto, R., Kantardjieff, K. (2003) Crystal structures of two thienyl analogs of benzil-1,2-dithien-2-ylethanedione (2,2’-thenil) and 1, 2-dithien-3-ylethanedione (3,3’-thenil). Journal of Chemical Crystallography, 33, 239-244.

[25]   Westcott, B.L., Gruhn, N.E. and Enemark, J.H. (1998) Evaluation of molybdenum-sulfur interactions in molybdoenzyme model complexes by gas-phase photoelectron spectroscopy. The “Electronic Buffer” effect. Journal of the American Chemical Society, 120, 3382-3386.

[26]   Lichtenberger, D. L. and Copenhaver, A.S. (1990) Ionization band profile analysis in valence photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 50, 335-352.

[27]   Yeh, J.J. and Lindau, I. (1985) Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. Atomic Data and Nuclear Data Tables, 32, 1-155.

[28]   Pereira, G.A., Massabni, A.C., Castellano, E.E., Costa, L.A.S., Leite, C.Q.F., Pavan, F.R. andCuin, A. (2012) A broad study of two new promising antimycobacterial drugs: Ag(I) and Au(I) complexes with 2-(2-thienyl)benzothiazole. Polyhedron, 38, 291-296.