Derivation of force constants based on the electric field gradient

Affiliation(s)

Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, China.

China Academy of Engineering Physics, Mainyang, China.

Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, China.

China Academy of Engineering Physics, Mainyang, China.

ABSTRACT

The present work devotes to studying the electric properties: electric quadrupole moment and electric field gradient (EFG) of molecules PdH and (PdH)^{-2} based on the full relativistic theory. It is the first time to explore that the force constants are essentially caused by electric field gradients, and indirectly with spectroscopic data. If EFG is positive, zero or negative, then the will be positive, zero or negative. Therefore, second order force constants are adjustable to changing the intensity of EFG.

Cite this paper

Zhu, Z. , Song, J. , Zhang, L. and Luo, D. (2013) Derivation of force constants based on the electric field gradient.*Natural Science*, **5**, 1284-1288. doi: 10.4236/ns.2013.512156.

Zhu, Z. , Song, J. , Zhang, L. and Luo, D. (2013) Derivation of force constants based on the electric field gradient.

References

[1] Huber, K.P. and Herzberg, G. (1979) Molecular spectra and molecular structure I-IV, Van Nostrand Reinhold Company.

[2] Murrell, J.N. (1984) Molecular potential energy functions. John Wiley, New York.

[3] Neese, F., Wolf, A., Fleig, T., Reiher, M. and Hess, B.A. (2005) Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll-Hess transformations. Journal of Chemical Physics, 122, 204107-204117.

http://dx.doi.org/10.1063/1.1904589

[4] Visscher, L., Enevoldsen, T., Saue, T. and Oddershede, J. (1998) Molecular relativistic calculations of the electric field gradients at the nuclei in the hydrogen halides. Journal of Chemical Physics, 109, 9677-9684.

http://dx.doi.org/10.1063/1.477637

[5] Mastalerz, R., Barone, G., Lindh, R. and Reiher, M. (2007) Analytic high-order Douglas-Kroll-Hess electric field gradients. Journal of Chemical Physics, 127, 074105-047117.

http://dx.doi.org/10.1063/1.2761880

[6] Luding, W. and Falter, C. (1996) Symmetries in physics. Springer-Verlag Heidelberg, Berlin.

[7] Tinkham, M. (1964) Group theory and quantum mechanics. McGraw-Hill, New York.

[8] Saue, T. and Jensen, H.J.A. (1999) Quaternion symmetry in relativistic molecular calculations. Journal of Chemical Physics, 111, 6211-6222.

http://dx.doi.org/10.1063/1.479958

[9] Saue, T. and Jensen, H.J.A. (2003) Linear response at the 4-components relativistic level. Journal of Chemical Physics, 118, 522-536.

[10] Zhu, Z.H. (1996, 2007) Atomic and molecular reaction statics. Science Press, Beijing.

[11] Zhu, Z.H. (2007) The atomic and molecular reaction statics. Science in China Series G: Physics Mechanics and Astronomy, 50, 581-590.

http://dx.doi.org/10.1007/s11433-007-0054-6

[12] Charlie, H. (1976) Introduction to mathematical physics. Prentice Hall, Inc., Engleewood Cliffs.

[13] Zhu, Z.H., Meng, D.Q., Tang, Y.J. and Wan, M.J. (2012) Electric properties of molecules (HX, X = F, Cl, Br) based on the full relativistic theory. Science in China Series G: Physics Mechanics and Astronomy, 42, 392-399.

[1] Huber, K.P. and Herzberg, G. (1979) Molecular spectra and molecular structure I-IV, Van Nostrand Reinhold Company.

[2] Murrell, J.N. (1984) Molecular potential energy functions. John Wiley, New York.

[3] Neese, F., Wolf, A., Fleig, T., Reiher, M. and Hess, B.A. (2005) Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll-Hess transformations. Journal of Chemical Physics, 122, 204107-204117.

http://dx.doi.org/10.1063/1.1904589

[4] Visscher, L., Enevoldsen, T., Saue, T. and Oddershede, J. (1998) Molecular relativistic calculations of the electric field gradients at the nuclei in the hydrogen halides. Journal of Chemical Physics, 109, 9677-9684.

http://dx.doi.org/10.1063/1.477637

[5] Mastalerz, R., Barone, G., Lindh, R. and Reiher, M. (2007) Analytic high-order Douglas-Kroll-Hess electric field gradients. Journal of Chemical Physics, 127, 074105-047117.

http://dx.doi.org/10.1063/1.2761880

[6] Luding, W. and Falter, C. (1996) Symmetries in physics. Springer-Verlag Heidelberg, Berlin.

[7] Tinkham, M. (1964) Group theory and quantum mechanics. McGraw-Hill, New York.

[8] Saue, T. and Jensen, H.J.A. (1999) Quaternion symmetry in relativistic molecular calculations. Journal of Chemical Physics, 111, 6211-6222.

http://dx.doi.org/10.1063/1.479958

[9] Saue, T. and Jensen, H.J.A. (2003) Linear response at the 4-components relativistic level. Journal of Chemical Physics, 118, 522-536.

[10] Zhu, Z.H. (1996, 2007) Atomic and molecular reaction statics. Science Press, Beijing.

[11] Zhu, Z.H. (2007) The atomic and molecular reaction statics. Science in China Series G: Physics Mechanics and Astronomy, 50, 581-590.

http://dx.doi.org/10.1007/s11433-007-0054-6

[12] Charlie, H. (1976) Introduction to mathematical physics. Prentice Hall, Inc., Engleewood Cliffs.

[13] Zhu, Z.H., Meng, D.Q., Tang, Y.J. and Wan, M.J. (2012) Electric properties of molecules (HX, X = F, Cl, Br) based on the full relativistic theory. Science in China Series G: Physics Mechanics and Astronomy, 42, 392-399.