Time-Optimal Control Problem for n× n Co-Operative Parabolic Systems with Control in Initial Conditions

Show more

References

[1] J. L. Lions, “Optimal Control of Systems Governed by Partial Differential Equations,” Springer-Verlag, New York, 1971. http://dx.doi.org/10.1007/978-3-642-65024-6

[2] J. L. Lions and E. Magenes, “Non-Homogeneous Boundary Value Problem and Applications, I, II,” Spring-Verlage, New York, 1972.

[3] H. O. Fattorini, “Infinite Dimensional Optimization Theory and Opotimal Control,” Cambridge University Press, Cambridge, 1998.

[4] K. D. Phung, G. Wang and X. Zhang, “On the Existence of Time Optimal Controls for Linear Evolution Equations,” Discrete and Continuous Dynamical Systems, Series B, Vol. 8, No. 4, 2007, pp. 925-941.

http://dx.doi.org/10.3934/dcdsb.2007.8.925

[5] G. Knowles, “Time Optimal Control of Parabolic Systems with Boundary Condition Involving Time Delays,” Journal of Optimization Theory and Applications, Vol. 25, No. 1, 1978, pp. 563-574.

http://dx.doi.org/10.1007/BF00933521

[6] H. O. Fattorini, “Infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems,” North-Holland Mathematics Studies, Vol. 201, Elsevier, Amsterdam, 2005.

[7] X. Li and J. Yong, “Optimal Control Theory for Infinite Dimensional Systems,” Birkhauser, Boston, 1995.

http://dx.doi.org/10.1007/978-1-4612-4260-4

[8] H. A. El-Saify, H. M. Serag and M. A. Shehata, “Time-Optimal Control for Co-Operative Hyperbolic Systems Involving Laplace Operator,” Journal of Dynamical and Control Systems, Vol. 15, No. 3, 2009, pp. 405-423.

http://dx.doi.org/10.1007/s10883-009-9067-y

[9] M. A. Shehata, “Some Time-Optimal Control Problems for n × n Co-Operative Hyperbolic Systems with Distributed or Boundary Controls,” Journal of Mathematical Sciences: Advances and Applications, Vol. 18, No. 1-2, 2012, pp. 63-83.

[10] A. Kowalewski, “Optimal Control via Initial State of an Infinite Order Time Delay Hyperbolic System,” 15th International Conference on Methods and Models in Automation and Robotics (MMAR), 23-26 August 2010, pp. 275-277.

[11] R. A. Adams, “Sobolev Spaces,” Academic Press, New York, 1975.

[12] J. Fleckinger, J. Hernández and F. de Thélin, “On the Existence of Multiple Principal Eigenvalues for Some Indefinite Linear Eigenvalue Problems,” Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas, Vol. 97, No. 2, 2003, pp. 461-466.