JBNB  Vol.4 No.4 A , December 2013
Fluid Flow and Sub-Bactericidal Release of Silver from Organic Nanocomposite Coatings Enhance ica Operon Expression in Staphylococcus epidermidis

The present study investigates the effect of a silver (Ag)-containing nanocomposite coating on Staphylococcus epidermidis adhesion and icaA gene expression. Bacterial interactions with organic coatings with and without Ag nanoclusters were assessed through a combination of both conventional phenotypic analysis, using microscopy, and genotypic analysis, using the relative reverse transcription Real-Time Polymerase Chain Reaction (RT-PCR). The results suggest that the incorporation of Ag in organic coatings can significantly decrease bacterial adhesion and viability with time, in comparison to the organic coating alone. The initial Ag release though at concentrations lower than the bactericidal, significantly increased icaA gene expression for the bacteria interacting with the Ag containing coating two hours post adhesion, especially under the higher shear rate. Stress-inducing conditions such as sub-bactericidal concentrations of Ag and high shear rate can therefore increase icaA expression, indicating that analysis of gene expression can not only refine our knowledge of bacterial-material interactions, but also yield novel biomarkers for potential use in assessing biomaterials antimicrobial performance.

Cite this paper: M. Katsikogianni, A. Foka, E. Sardella, C. Ingrosso, P. Favia, A. Mangone, I. Spiliopoulou and Y. Missirlis, "Fluid Flow and Sub-Bactericidal Release of Silver from Organic Nanocomposite Coatings Enhance ica Operon Expression in Staphylococcus epidermidis," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 4, 2013, pp. 30-40. doi: 10.4236/jbnb.2013.44A004.

[1]   R. Y. Kannan, H. J. Salacinski, P. E. Butler, G. Hamilton and A. M. Seifalian, “Current Status of Prosthetic Bypass Grafts: A Review,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 74B, No. 1, 2005, pp. 570-581.

[2]   C. Von Eiff, G. Peters and C. Heilmann, “Pathogenesis of Infections Due to Coagulase-Negative Staphylococci,” The Lancet Infectious Diseases, Vol. 2, No. 11, 2002, pp. 677-685.

[3]   J.-L. Vincent, “Nosocomial Infections in Adult Intensive-Care Units,” Lancet, Vol. 361, No. 9374, 2003, pp. 2068-2077.

[4]   C. Vuong and M. Otto, “Staphylococcus epidermidis Infections,” Microbes and Infection, Vol. 4, No. 4, 2002, pp. 481-489.

[5]   J. W. Costerton, P. S. Stewart and E. P. Greenberg, “Bacterial Biofilms: A Common Cause of Persistent Infections,” Science, Vol. 284, No. 5418, 1999, pp. 1318-1322.

[6]   R. M. Donlan and J. W. Costerton, “Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms,” Clinical Microbiology Reviews, Vol. 15, No. 2, 2002, pp. 167-193.

[7]   C. Heilmann, O. Schweitzer, C. Gerke, N. Vanittanakom, D. Mack and F. Gotz, “Molecular Basis of Intercellular Adhesion in the Biofilm-Forming Staphylococcus epidermidis,” Molecular Microbiology, Vol. 20, No. 5, 1996, pp. 1083-1091.

[8]   H. Rohde, S. Frankenberger, U. Zähringer and D. Mack, “Structure, Function and Contribution of Polysaccharide Intercellular Adhesin (PIA) to Staphylococcus epidermidis Biofilm Formation and Pathogenesis of Biomaterial-Associated Infections,” European Journal of Cell Biology, Vol. 89, No. 1, 2010, pp. 103-111.

[9]   G. B. Perera, R. M. Fujitani and S. M. Kubaska, “Aortic Graft Infection: Update on Management and Treatment Options,” Vascular and Endovascular Surgery, Vol. 40, No. 1, 2006, pp. 1-10.

[10]   S. Jamel, R. Attia and C. Young, “Management of an Infected Aortic Graft with Endovascular Stent Grafting,” Diagnostic and Interventional Radiology, Vol. 19, No. 1, 2013, pp. 66-69.

[11]   A. T. Ali, J. G. Modrall, J. Hocking, R. J. Valentine, H. Spencer, J. F. Eidt and G. P. Clagett, “Long Term Results of the Treatment of Aortic Graft Infection by in Situ Replacement with Femoral Popliteal Vein Grafts,” Journal of Vascular Surgery, Vol. 50, No. 1, 2009, pp. 30-39.

[12]   P. F. Lawrence, “Conservative Treatment of Aortic Graft Infection,” Seminars in Vascular Surgery, Vol. 24, No. 4, 2011, pp. 199-204.

[13]   D. Campoccia, L. Montanaro, P. Spezialec and C. R. Arciola, “Antibiotic-Loaded Biomaterials and the Risks for the Spread of Antibiotic Resistance Following Their Prophylactic and Therapeutic Clinical Use,” Biomaterials, Vol. 31, No. 25, 2010, pp. 6363-6377.

[14]   D. J. Balazs, K. Triandafillu, E. Sardella, G. Iacoviello, P. Favia, R. d’Agostino, H. Harms and H. J. Mathieu, “PE-CVD Modification of Medical Grade PVC to Inhibit Bacterial Adhesion: PEO-Like and Nano-Composite Ag/PEO-Like Coatings,” In: R. d’Agostino, P. Favia, M. R. Wertheimer and C. Oehr, Eds., Plasma Processes and Polymers, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005, pp. 351-372.

[15]   F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, R. Bayston, P. D. Brown, P. D. Winship and H. J. Reid, “Silver Nanoparticles and Polymeric Medical Devices: A New Approach to Prevention of Infection?” Journal of Antimicrobial Chemotherapy, Vol. 54, No. 6, 2004, pp. 1019-1024.

[16]   N. Stobie, B. Duffy, D. E. McCormack, J. Colreavy, M. Hidalgo, P. McHale and S. Hinder, “Prevention of Staphylococcus epidermidis Biofilm Formation Using a Low-Temperature Processed Silver-Doped Phenyltriethoxysilane Sol-Gel Coating,” Biomaterials, Vol. 29, No. 8, 2008, pp. 963-969.

[17]   E. M. Hetrick and M. H. Schoenfisch, “Reducing Implant-Related Infections: Active Release Strategies,” Chemical Society Reviews, Vol. 35, No. 9, 2006, pp. 780-789.

[18]   N. Cerca, G. B. Pier, M. Vilanova, R. Oliveira and J. Azeredo, “Quantitative Analysis of Adhesion and Biofilm Formation on Hydrophilic and Hydrophobic Surfaces of Clinical Isolates of Staphylococcus epidermidis,” Research in Microbiology, Vol. 156, No. 4, 2005, pp. 506-514.

[19]   S. Kajiyama, T. Tsurumoto, M. Osaki, K. Yanagihara and H. Shindo, “Quantitative Analysis of Staphylococcus epidermidis Biofilm on the Surface of Biomaterial,” Journal of Orthopaedic Science, Vol. 14, No. 6, 2009, pp. 769-775.

[20]   M. W. Pfaffl, “Quantification Strategies in Real-Time PCR,” In: S. A. Bustin, Ed., A-Z of Quantitative PCR, International University Line (IUL), La Jolla, 2004, pp. 89-113.

[21]   M. Otto, “Molecular Basis of Staphylococcus epidermidis infections,” Seminars in Immunopathology, Vol. 34, No. 2, 2012, pp. 201-214.

[22]   K. C. Chaw, M. Manimaran and E. H. Tay Francis, “Role of Silver Ions in Destabilization of Intermolecular Adhesion Forces Measured by Atomic Force Microscopy in Staphylococcus epidermidis Biofilms,” Antimicrobial Agents and Chemotherapy, Vol. 49, No. 12, 2005, pp. 4853-4859.

[23]   H. L. Goldsmith and V. T. Turitto, “Reological Aspects of Thrombosis and Haemostasis: Basic Principles and Applications,” Thrombosis and Haemostasis, Vol. 55, No. 3, 1986, pp. 415-435.

[24]   P. Favia, M. Vulpio, R. Marino, R. d’Agostino, R. P. Mota and M. Catalano, “Plasma-Deposition of Ag-Containing Polyethyleneoxide-Like Coatings,” Plasmas and Polymers, Vol. 5, No. 1, 2000, pp. 1-14.

[25]   P. Favia, M. Creatore, F. Palumbo, V. Colaprico and R. d’Agostino, “Process Control for Plasma Processing of Polymers,” Surface and Coatings Technology, Vol. 142-144, 2001, pp. 1-6.

[26]   G. Beamson and D. Briggs, “High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database,” Wiley, Chichester, 1992.

[27]   A. Foka, M. G. Katsikogianni, E. D. Anastassiou, I. Spiliopoulou and Y. F. Missirlis, “The Combined Effect of Surface Chemistry and Flow Conditions on Staphylococcus epidermidis Adhesion and Ica Operon Expression,” European Cells Mater, Vol. 24, 2012, pp. 386-402.

[28]   M. Stavridi, M. Katsikogianni and Y. F. Missirlis, “The Influence of Surface Patterning and/or Sterilization on the Haemocompatibility of Polycaprolactones,” Materials Science and Engineering: C, Vol. 23, No. 3, 2003, pp. 359-365.

[29]   C. R. Arciola, D. Campoccia, M. Cervellati, E. Donati and L. Montanaro, “Detection of Slime Production by Means of an Optimised Congo Red Agar Plate Test Based on a Colourimetric Scale in Staphylococcus epidermidis Clinical Isolates Genotyped for Ica Locus,” Biomaterials, Vol. 23, No. 21, 2002, pp. 4233-4239.

[30]   V. Chini, A. Foka, G. Dimitracopoulos and I. Spiliopoulou, “Absolute and Relative Real-Time PCR in the Quantification of tst Gene Expression among Methicillin-Resistant Staphylococcus aureus: Evaluation by Two Mathematical Models,” Letters in Applied Microbiology, Vol. 45, No. 5, 2007, pp. 479-484.

[31]   U. Fluckiger, M. Ultrich, A. Steinhuber, G. Döring, D. Mack, R. Landmann, C. Goerke and C. Woltz, “Biofilm Formation, icaADBC Transcription and Polysaccharide Intercellular Adhesin Synthesis by Staphylococci in a Device-Related Infection Model,” Infection and Immunity, Vol. 73, No. 3, 2005, pp. 1811-1819.

[32]   P. G. De Gennes, “Wetting: Static and Dynamic,” Reviews of Modern Physics, Vol. 57, No. 3, 1985, pp. 827-864.

[33]   M. Katsikogianni, I. Spiliopoulou, D. P. Dowling and Y. F. Missirlis, “Adhesion of Slime Producing Staphylococcus epidermidis Strains to PVC and Diamond-Like Carbon/Silver/Fluorinated Coatings,” Journal of Materials Science: Materials in Medicine, Vol. 17, No. 8, 2006, pp. 679-689.

[34]   W. Qu, H. J. Busscher, H. C. van der Mei and J. M. M. Hooymans, “Bacterial Adhesion Forces to Ag-Impregnated Contact Lens Cases and Transmission to Contact Lenses,” Cornea, Vol. 32, No. 3, 2013, pp. 326-331.

[35]   K. Kawahara, K. Tsuruda, M. Morishita and M. Uchida, “Antibacterial Effect of Silver-Zeolite on Oral Bacteria under Anaerobic Conditions,” Dental Materials, Vol. 16, No. 6, 2000, pp. 452-455.

[36]   S. Sandström, “The Antibacterial Effect of Silver with Different Release Kinetics,” Ph.D. Dissertation, Chalmers University of Technology, Goteborg, 2011.

[37]   C. Prigent-Combaret, O. Vidal, C. Dorel and P. Lejeune, “Abiotic Surface Sensing and Biofilm-Dependent Regulation of Gene Expression in Escherichia coli,” Journal of Bacteriology, Vol. 181, No. 19, 1999, pp. 5993-6002.

[38]   P. Becker, W. Hufnagle, G. Peters and M. Herrmann, “Detection of Different Gene Expression in Biofilm-Forming versus Planktonic Populations of Staphylococcus aureus Using Micro-Representational-Difference Analysis,” Applied and Environmental Microbiology, Vol. 67, No. 7, 2001, pp. 2958-2965.

[39]   S. Kajiyama, T. Tsurumoto, M. Osaki, K. Yanagihara and H. Shindo, “Quantitative analysis of Staphylococcus epidermidis Biofilm on the Surface of Biomaterial,” Journal of Orthopaedic Science, Vol. 14, No. 6, 2009, pp. 769-775.

[40]   S. J. Vandecasteele, W. E. Peetermans, A. Carbonez and J. Van Eldere, “Metabolic Activity of Staphylococcus epidermidis Is High during Initial and Low during Late Experimental Foreign-Body Infection,” Journal of Bacteriology, Vol. 186, No. 8, 2004, pp. 2236-2239.

[41]   F. Fitzpatrick, H. Humphreys, E. Smythy, C. A. Kennedy and J. P. O’Gara, “Environmental Regulation of Biofilm Formation in Intensive Care Unit Isolates of Staphylococcus epidermidis,” Journal of Hospital Infection, Vol. 52, No. 3, 2002, pp. 212-218.

[42]   R. Kuehl, S. Al-Bataineh, O. Gordon, R. Luginbuehl, M. Otto, M. Textor and R. Landmann, “Furanone at Subinhibitory Concentrations Enhances Staphylococcal Biofilm Formation by luxS Repression,” Antimicrobial Agents and Chemotherapy, Vol. 53, No. 10, 2009, pp. 4159-4166.

[43]   T. Nuryastuti, B. P. Krom, A. T. Aman, H. J. Busscher and H. C. van der Mei, “Ica-Expression and Gentamicin Susceptibility of Staphylococcus epidermidis Biofilm on Orthopedic Implant Biomaterials,” Journal of Biomedical Materials Research Part A, Vol. 96A, No. 2, 2011, pp. 365-371.

[44]   W. Thomas, E. Trintchina, M. Forero, V. Vogel and E. Sokurenko, “Bacterial Adhesion to Target Cells Enhanced by Shear Force,” Cell, Vol. 109, No. 7, 2002, pp. 913-923.

[45]   W. M. Weaver, V. Milisavljevic, J. F. Miller and D. Di Carlo, “Fluid Flow Induces Biofilm Formation in Staphylococcus epidermidis Polysaccharide Intracellular Adhesin-Positive Clinical Isolates,” Applied and Environmental Microbiology, Vol. 78, No. 16, 2012, pp. 5890-5896.

[46]   L. Braydich-Stolle, S. Hussain, J. J. Schlager and M. C. Hofmann, “In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells,” Toxicological Sciences, Vol. 88, No. 2, 2005, pp. 412-419.