JMP  Vol.4 No.12 , December 2013
Damping-Antidamping Effect on Comets Motion
ABSTRACT

We make an observation about Galilean transformation on a 1-D mass variable system which leads us to the right way to deal with mass variable systems. Then using this observation, we study two-body gravitational problem where the mass of one of the bodies varies and suffers a damping-antidamping effect due to star wind during its motion. For this system, a constant of motion, a Lagrangian and a Hamiltonian are given for the radial motion, and the period of the body is studied using the constant of motion of the system. Our theoretical results are applied to Halley’s Comet.


Cite this paper
G. López and E. Juárez, "Damping-Antidamping Effect on Comets Motion," Journal of Modern Physics, Vol. 4 No. 12, 2013, pp. 1638-1646. doi: 10.4236/jmp.2013.412204.
References
[1]   G. López, L. A. Barrera, Y. Garibo, H. Hernández and J. C. Salazar, International Journal of Theoretical Physics, Vol. 43, 2004, p. 1.

[2]   H. Gylden, Astronomische Nachrichten, Vol. 109, 1884, pp. 1-6. http://dx.doi.org/10.1002/asna.18841090102

[3]   I. V. Meshcherskii, Astronomische Nachrichten, Vol. 132, 1893, p. 93.

[4]   I. V. Meshcherskii, Astronomische Nachrichten, Vol. 159, 1902, p. 229.

[5]   E. O. Lovett, Astronomische Nachrichten, Vol. 158, 1902, pp. 337-344. http://dx.doi.org/10.1002/asna.19021582202

[6]   J. H. Jeans, MNRAS, Vol. 85, 1924, p. 2.

[7]   L. M. Berkovich, Celestial Mechanics, Vol. 24, 1981, pp. 407-429. http://dx.doi.org/10.1007/BF01230399

[8]   A. A. Bekov, Astron. Zh., Vol. 66, 1989, p. 135.

[9]   C. Prieto and J. A. Docobo, Astronomy & Astrophysics, Vol. 318, 1997, p. 657.

[10]   A. Sommerfeld, “Lectures on Theoretical Physics,” Vol. 1, Academic Press, 1964.

[11]   A. G. Zagorodny, P. P. J. M. Schram and S. A. Trigger, Physical Review Letters, Vol. 84, 2000, pp. 3594-3597.
http://dx.doi.org/10.1103/PhysRevLett.84.3594

[12]   O. T. Serimaa, J. Javanainen and S. Varró, Physical Review A, Vol. 33, 1986, pp. 2913-2927.
http://dx.doi.org/10.1103/PhysRevA.33.2913

[13]   H. A. Bethe, Physical Review Letters, Vol. 56, 1986, pp. 1305-1308.
http://dx.doi.org/10.1103/PhysRevLett.56.1305

[14]   E. D. Commins and P. H. Bucksbaum, “Weak Interactions of Leptons and Quarks,” Cambridge University Press, Cambridge, 1983.

[15]   F. W. Helhl, C. Kiefer and R. J. K. Metzler, “Black Holes: Theory and Observation,” Springer-Verlag, 1998.
http://dx.doi.org/10.1007/b13593

[16]   P. W. Daly, Astronomy & Astrophysics, Vol. 226, 1989, p. 318.

[17]   H. Goldstein, “Classical Mechanics,” Addison-Wesley, 1950.

[18]   A. R. Plastino and J. C. Muzzio, Celestial Mechanics and Dynamical Astronomy, Vol. 53, 1992, pp. 227-232.
http://dx.doi.org/10.1007/BF00052611

[19]   G. López, International Journal of Theoretical Physics, Vol. 46, 2007, pp. 806-816.
http://dx.doi.org/10.1007/s10773-006-9085-4

[20]   C. Møller, “Theory of Relativity,” Oxford University Press, Oxford, 1952.

[21]   M. Spivak, “Physics for Mathematicians, Mechanics I,” Publish or Perish Inc., 2010.

[22]   G. López, “Partial Differential Equations of First Order and Their Applications to Physics,” World Scientific, 1999.
http://dx.doi.org/10.1142/4006

[23]   F. John, “Partial Differential Equations,” Springer-Verlag, New York, 1974.

[24]   J. A. Kobussen, Acta Phys. Austr., Vol. 51, 1979, p. 193.

[25]   C. Leubner, Physics Letters A, Vol. 86, 1981, pp. 68-70.
http://dx.doi.org/10.1016/0375-9601(81)90166-3

[26]   G. López, Annals of Physics, Vol. 251, 1996, pp. 372-383.
http://dx.doi.org/10.1006/aphy.1996.0118

[27]   G. Cevolani, G. Bortolotti and A. Hajduk, Il Nuovo Cimento C, Vol. 10, 1987, pp. 587-591.
http://dx.doi.org/10.1007/BF02507255

[28]   J. L. Brandy, Journal of the British Astronomical Association, Vol. 92, 1982, p. 209.

[29]   B. V. Chirikov and V. V. Vecheslavov, Astronomy & Astrophysics, Vol. 221, 1989, p. 146.

 
 
Top