Transient Waves Due to Thermal Sources in a Generalized Piezothermoelastic Half-Space

References

[1] F. Ashida, T. R Tauchert and N. Noda, “Intelligent Struc- tures for Aerospace: A Technology Overview and Assess- ment,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1689- 1700. doi:10.2514/3.12161

[2] F. Ashida and T. R. Tauchert, “Transient Response of a Piezothermoelastics Circular Disc under Axisymmetric Heating,” Acta Mechanica, Vol. 128, No. 1-2, 1998, pp. 1-14. doi:10.1007/BF01463155

[3] Y. Shindo, K. Watanabe and F. Narita, “Electroelastic Analysis of a Pie-zoelectric Ceramic Strip with a Central Crack,” International Journal of Engineering Science, Vol. 38, No. 1, 2000, pp. 1-19.
doi:10.1016/S0020-7225(99)00015-4

[4] J. Duhamel, “Second Memoire Sur Les Phenomenon Thermo-Mechanique,” Journal de l'Ecole Polytechnique, Vol. 15, 1937, pp. 1-15.

[5] H. W Lord and Y. Shulmann, “A Generalized Dynamical Theory of Thermoelasticity,” Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, 1967, pp. 299-309.
doi:10.1016/0022-5096(67)90024-5

[6] A. E. Green and K. E. Lindasy, “Thermoelasticity,” Journal of Elasticity, Vol. 2, No. 1, 1972, pp. 1-7.
doi:10.1007/BF00045689

[7] D. S. Chandrasekharaiah, “Thermoelasticity with Second Sound—A Review,” Applied Mechanics Review, Vol. 39, No. 3, 1986, pp. 355-376. doi:10.1115/1.3143705

[8] C. C. Ackerman, B. Bentman, H. A. Fairbank and R. A. Krumhansal, “Second Sound in Solid Helium,” Physical Review Letters, Vol. 16, 1966, pp. 789-791.
doi:10.1103/PhysRevLett.16.789

[9] C. C. Ackerman and W. C. Overtone, “Second Sound in Solid Helium, 3,” Physical Review Letters, Vol. 22, No. 15, 1969, pp. 764-766. doi:10.1103/PhysRevLett.22.764

[10] R. A. Guyer and J. A. Krumhansl, “Thermal Conductivity, Second Sound and Phononhydrodynamic Phenomena in Nonmetallic Crystals,” Physical Review, Vol. 148, No. 2, 1966, 778-788. doi:10.1103/PhysRev.148.778

[11] A. E. Green and P. M. Nagdhi, “A Re-Examination of the Basic Postulates of Thermodynamics,” Proceedings of the Royal Society A, London, Vol. 432, 1991, pp. 171- 194. doi:10.1098/rspa.1991.0012

[12] A. E. Green and K. E. Lindsay, “On Undamped Heat Waves in an Elastic Solid,” Journal of Thermal Stresses, Vol. 15, No. 2, 1992, pp. 252-264.
doi:10.1080/01495739208946136

[13] Green A. E. and Nagdhi P. M., “Thermoelasticity without Energy Dissipation,” Journal of Thermal Stresses, Vol. 31, No. 3, 1993, pp. 189-208.

[14] K. S. Hrinath, “Surface Point Source in Generalized Ther- moelastic Half Space,” Indian Journal of Pure and Applied Mathematics, Vol. 8, 1975, pp. 1347-1351.

[15] K. S. Hrinath, “Surface Line Source in Generalized Ther- Moelastic Half Space,” Indian Journal of Pure and Applied Mathematics, Vol. 11, 1980, pp. 1210-1216.

[16] M. C. Majhi, “Discontinuities in Generalized Thermoelastic Wave Propagation in a Semi-Infinite Piezoelectric Rod,” Journal of Technical Physics, Vol. 36, No. 3, 1995, pp. 269-278.

[17] W. Nowacki, “Some General Theorems of Ther-mo-Piezoelectricity,” Journal of Thermal Stresses, Vol. 1, 1978, pp. 171-182. doi:10.1080/01495737808926940

[18] W. Nowacki, “Foundations of Linear Piezoelectricity,” In: H. Parkus; Ed., Electromagnetic Interactions in Elastic Solids, Springer Verlag, Vienna, 1979.

[19] D. S. Chandrasekhariah, “A Temperature Rate Dependent Theory of Piezoelectricity,” Journal of Thermal Stresses, Vol. 7, 1984, pp. 293-306.
doi:10.1080/01495738408942213

[20] D. S. Chandrasekhariah, “Generalized Linear Thermoelasticity Theory of Piezoelectric Media,” Acta Mechanica, Vol. 71, No. 1-4, 1988, pp. 39-49.
doi:10.1007/BF01173936

[21] L. Honig and R. S. Dhaliwal, “Thermal Shock Problem in Generalized Thermoelastic Halfspace,” Indian Journal of Pure and Applied Mathematics, Vol. 27, 1996, pp. 85-101.

[22] O. P. Niraula and N. Noda, “Thermal Stresses Analysis of Piezothermoelastic Strip with an Edge Crack,” Journal of Thermal Stresses, Vol. 25, 2002, pp. 389-405.
doi:10.1080/014957302753505031

[23] O. P. Niraula and N. Noda, “The Analysis of Thermal Stresses in Thermo-Piezoelastic Semi-Infinite Body with an Edge Crack,” Archive of Applied Mechanics, Vol. 72, No. 2-3, 2002, pp. 119-126.
doi:10.1007/s00419-002-0204-2

[24] J. N. Sharma and V. Kumar, “Plane Strain Problems of Transversely Isotropic Thermoelastic Media”, Journal of Thermal Stresses, Vol. 20, 1997, pp. 463-476.
doi:10.1080/01495739708956113

[25] J. N. Sharma, A. D. Thakur and Y. D. Sharma, “Disturbance Due to Periodic Thermal Load in a Piezothermoelastic Half-Space,” International Journal of Applied Mechanics, Vol. 1, No. 4, 2009, pp. 607-629.
doi:10.1142/S1758825109000320

[26] M. Aouadi, “Electromagneto-Thermoelastic Fundamental Solutions in a Two-Dimensional Problem for Short Time,” Acta Mechanica, Vol. 174, 2005, 223-240.
doi:10.1007/s00707-004-0201-3

[27] J. N. Sharma, “Numerical Methods for Engineers and Scientists,” 2nd Edition, Alpha Science International Ltd., Oxford, Narosa Publishing House Pvt. Ltd., New Delhi, 2007.

[28] J. N. Sharma and V. Walia, “Straight and Circular Crested Lamb Waves in Generalized Piezothermoelastic Plates,” Journal of Thermal Stresses, Vol. 29, 2006, pp. 529-551.
doi:10.1080/01495730500373552

[29] D. V. Strunin, “On Characteristics Times in Generalized Thermoelasticity,” Journal of Applied Mechanics, Vol. 68, No. 5, 2001, pp. 816-817. doi:10.1115/1.1386696

[30] R. V. Churchill, “Operational Mathematics,” 3rd edition, McGraw-Hill Kogakusha Ltd., Tokyo, 1972.

[31] J. N. Sharma and K. Singh, “Partial Differential Equa- tions for Engineers and Scientists,” 2nd Edition, Alpha Science International Ltd., Oxford, Narosa Pub-lish- ing House Pvt. Ltd., New Delhi, 2009.

[32] G. Honig, and U. Hirdes, “A Method for the Numerical Inversion of the Laplace Transform,” Journal of Computational and Applied Mathematics, Vol. 10, No. 1, 1984, pp. 113-132. doi:10.1016/0377-0427(84)90075-X

[33] B. Bradie “A Friendly Introduction to Numerical Analy- sis,” Pearson Education, Prentice Hall, New Delhi, 2007.

[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes in FORTRAN,” 2nd Edition, Cambridge University Press, Cambridge, 1992.