Health  Vol.5 No.12 , December 2013
Case-control analysis of the ERAP1 polymorphism rs30187 in Italian type 1 diabetes mellitus patients

Autoimmune diseases are a heterogeneous group of disorders affecting different organs and tissues whose incidence are increasing worldwide. New tools, such as genome-wide association studies, have provided evidence for new susceptibility loci and candidate genes in the disease process including common susceptibility genes involved in the immunological synapse and T cell activation. Close linkages have been found in a number of diseases, including ankylosing spondylitis, multiple sclerosis, Crohn’s disease and insulin-dependent diabetes mellitus (Type 1 diabetes mellitus). The evidence for some associations with Type 1 diabetes was previously found in the region containing 5q15/ERAP1 (endoplasmic reticulum aminopeptidase 1) (rs30187, ARTS1). Our aim was to conduct the first casecontrol study to test the association between the rs30187 polymorphism of ERAP1 and the development of Type 1 diabetes mellitus in patients selected from continental Italy. All control subjects were matched for the sex, age, ethnic origin and geographical area. Genotyping of the rs30187 polymorphism of ERAP1 was carried out by the allelic discrimination assay on DNA extracted from whole blood. We did not observe a statistically significant prevalence of the rs30187 polymorphism of ERAP1 in our cohort of patients than in controls suggesting a minor contribution of this gene to the pathogenesis of Type 1 diabetes mellitus in Italian patients.


Cite this paper: Gianchecchi, E. , Crinò, A. , Palma, A. , Luciano, R. , Perri, V. , Fruci, D. , Cappa, M. and Fierabracci, A. (2013) Case-control analysis of the ERAP1 polymorphism rs30187 in Italian type 1 diabetes mellitus patients. Health, 5, 2150-2155. doi: 10.4236/health.2013.512293.

[1]   Fierabracci, A. and Ayroldi, E. (2011) Experimental strategies in autoimmunity: Antagonists of cytokines and their receptors, nanocarriers, inhibitors of immunoproteasome, leukocyte migration and protein kinases. Current Pharmaceutical Design, 17, 3094-3107.

[2]   Fierabracci, A. (2009) Unravelling the role of infectious agents in the pathogenesis of human autoimmunity: The hypothesis of the retroviral involvement revisited. Current Molecular Medicine, 9, 1024-1033.

[3]   Shapira, Y., Agmon-Levin, N. and Shoenfeld Y. (2010) Defining and analyzing geoepidemiology and human autoimmunity. Journal of Autoimmunity, 34, J168-177.

[4]   Gregersen, P.K., Diamond, B. and Plenge, R.M. (2012) GWAS implicates a role for quantitative immune traits and threshold effects in risk for human autoimmune disorders. Current Opinion in Immunology, 24, 538-543.

[5]   Dittmar, M. and Kahaly, G.J. (2010) Genetics of the autoimmune polyglandular syndrome type 3 variant. Thyroid, 20, 737-743.

[6]   Bluestone, J.A., Herold, K. and Eisenbarth, G. (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 464, 1293-1300.

[7]   Palma, A., Gianchecchi, E., Palombi, M., Luciano, R., Di Carlo, P., Crinò, A., Cappa, M. and Fierabracci, A. (2013) Analysis of the autoimmune regulator gene in patients with autoimmune non-APECED polyendocrinopathies. Genomics, 102, 163-168.

[8]   Gianchecchi, E., Palombi, M. and Fierabracci, (2013) A. The putative role of the C1858T polymorphism of protein tyrosine phosphatase PTPN22 gene in autoimmunity. Autoimmunity Reviews, 12, 717-725.

[9]   Garg, G., Tyler, J.R., Yang, J.H., Cutler, A.J., Downes, K., Pekalski, M., Bell, G.L., Nutland, S., Peakman, M., Todd, J.A., Wicker, L.S. and Tree, T.I. (2012) Type 1 diabetesassociated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. Journal of Immunology, 188, 4644-4653.

[10]   Santiago, J.L., Alizadeh, B.Z., Martínez, A., Espino, L., de la Calle, H., Fernández-Arquero, M., Figueredo, M.A., de la Concha, E.G., Roep, B.O., Koeleman, B.P. and Urcelay, E. (2008) Study of the association between the CAPSL-IL7R locus and type 1 diabetes. Diabetologia, 51, 1653-1658.

[11]   Todd, J.A., Walker, N.M., Cooper, J.D., Smyth, D.J., Downes, K., Plagnol, V., et al. (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genetics, 39, 857-864.

[12]   Park, C. and Cuervo, A.M. (2013) Selective autophagy: Talking with the UPS. Cell Biochemistry and Biophysics, 67, 3-13.

[13]   Neefjes, J., Jongsma, M.L., Paul, P. and Bakke, O. (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nature Reviews in Immunology, 11, 823-836.

[14]   Saveanu, L., Carroll, O., Lindo, V., Del Val, M., Lopez, D., Lepelletier, Y., Greer, F., Schomburg, L., Fruci, D., Niedermann, G. and van Endert, P.M. (2005) Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nature Immunology, 6, 689-697.

[15]   Fierabracci, A., Milillo, A., Locatelli, F. and Fruci, D. (2012) The putative role of endoplasmic reticulum aminopeptidases in autoimmunity: Insights from genomic-wide association studies. Autoimmunity Reviews, 12, 281-288.

[16]   Hughes, A.L. and Yeager, M. (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annual Reviews in Genetics, 32, 415-435.

[17]   Pedersen, O.B., Svendsen, A.J., Ejstrup, L., Skytthe, A., Harris, J.R. and Junker, P. (2008) Ankylosing spondylitis in Danish and Norwegian twins: Occurrence and the relative importance of genetic vs. environmental effectors in disease causation. Scandinavian Journal of Rheumatology, 37, 120-126.

[18]   Australo-Anglo-American Spondyloarthritis Consortium (TASC), Reveille, J.D., Sims, A.M., Danoy, P., Evans, D.M., Leo, P., et al. (2010) Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nature Genetics, 42, 123-127.

[19]   Evans, D.M., Spencer, C.C., Pointon, J.J., Su, Z., Harvey, D., Kochan, G., et al. (2011) Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nature Genetics, 43, 761-767.

[20]   Guerini, F.R., Cagliani, R., Forni, D., Agliardi, C., Caputo, D., Cassinotti, A., et al. (2012) A functional variant in ERAP1 predisposes to multiple sclerosis. PLoS One, 7, Article ID: e29931.

[21]   Barrett, J.C., Hansoul, S., Nicolae, D.L., Cho, J.H., Duerr, R.H., Rioux, J.D., et al. (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nature Genetics, 40, 955-962.

[22]   Fung, E.Y., Smyth, D.J., Howson, J.M., Cooper, J.D., Walker, N.M., Stevens, H., Wicker, L.S. and Todd, J.A. (2009) Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immunity, 10, 188-191.

[23]   Pierdominici, M., Vomero, M., Barbati, C., Colasanti, T., Maselli, A., Vacirca, D., Giovannetti, A., Malorni, W. and Ortona, E. (2012) Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB Journal, 26, 1400-1412.

[24]   Gianchecchi, E., Delfino, D.V. and Fierabracci, A. (2013) Recent insights on the putative role of autophagy in autoimmune diseases. Autoimmunity Reviews.

[25]   Zhou, X.J., Lu, X.L., Lv, J.C., Yang, H.Z., Qin, L.X., Zhao, M.H., Su, Y., Shen, N., Li, Z.G. and Zhang, H. (2011) Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Annals Rheumatic Diseases, 70, 1330-1337.

[26]   Aickinger, M., Wu, C., Nedjic, J. and Klein, L. (2013) Macroauthophagy substrated are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. Journal of Experimental Medicine, 210, 287-300.

[27]   Gros, F., Arnold, J., Page, N., Décossas, M., Korganow, A.S., Martin, T. and Muller, S. (2012) Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy, 8, 1113-1123.

[28]   Kovacs, J.R., Li, C., Yang, Q., Li, G., Garcia, I.G., Ju, S., Roodman, D.G., Windle, J.J., Zhang, X. and Lu, B. (2012) Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death & Differentiation, 19, 144-152.