IJOC  Vol.3 No.4 , December 2013
Synthesis of Multifunctionalised 2-Substituted Benzimidazoles Using Copper (II) Hydroxide as Efficient Solid Catalyst
Abstract: Here we demonstrate the synthesis of multifunctionalised benzimidazoles through the coupling of o-phenylenediamine with aldehydes by using Copper (II) hydroxide as an efficient solid catalyst in methanol at room temperature. The Copper (II) hydroxide solid catalyst gave better yields (80%-99%) in short reaction time (4-8 h). These commercially available cheap catalysts are more active than many reported expensive heterogeneous catalysts. Using the Copper hydroxide fresh catalyst, the yield of product 3a was 98%, while the recovered catalyst in the three subsequent cycles gave the yield of 94%, 90% and 88% respectively.  
Cite this paper: M. Chari, &. Zaied-A-Mosaa, D. Shobha and S. Malayalama, "Synthesis of Multifunctionalised 2-Substituted Benzimidazoles Using Copper (II) Hydroxide as Efficient Solid Catalyst," International Journal of Organic Chemistry, Vol. 3 No. 4, 2013, pp. 243-250. doi: 10.4236/ijoc.2013.34035.

[1]   G. L. Gravatt, B. C. Baguley, W. R. Wilson and W. A. Denny, “DNA-Directed Alkylating Agents. 6. Synthesis and Antitumor Activity of DNA Minor Groove-Targeted Aniline Mustard Analogs of Pibenzimol (Hoechst 33258),” Journal of Medicinal Chemistry, Vol. 37, No. 25, 1994, pp. 4338-4345.

[2]   J. S. Kim, B. Gatto, C. Yu, A. Liu, L. F. Liu and J. Edmond LaVoie, “Substituted 2,5-Bi-1H-benzimidazoles: Topoisomerase I Inhibition and Cytotoxicity,” Journal of Medicinal Chemistry, Vol. 39, No. 4, 1996, pp. 992-998.

[3]   T. Roth, M. L. Morningstar, L. P. Boyer, H. S. Hughes, W. R. Buckheit Jr and J. C. Michejda, “Synthesis and Biological Activity of Novel Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase. 2-Aryl-Substituted Benzimidazoles,” Journal of Medicinal Chemistry, Vol. 40, No. 26, 1997, pp. 4199-4207.

[4]   D. A. Horton, G. T. Bourne and M. L. Smythe, “The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures,” Chemical Reviews, Vol. 103, No. 3, 2003, pp. 893-930.

[5]   B. Q. Gong, F. Hong, C. Kohm, L. Bonham and P. Klein, “Synthesis and SAR of 2-Arylbenzoxazoles, Benzothiazoles and Benzimidazoles as Inhibitors of Lysophosphatidic Acid Acyltransferase-β,” Bioorganic & Medicinal Chemistry Letters, Vol. 14, 2004, pp. 1455-1459.

[6]   S. M. Sondhi, N. Singh, A. K. Lozach and L. Meijer, “Synthesis, Anti-Inflammatory, Analgesic and Kinase (CDK-1, CDK-5 and GSK-3) Inhibition Activity Evaluation of Benzimidazole/Benzoxazole Derivatives and Some Schiff’s Bases,” Bioorganic & Medicinal Chemistry, Vol. 14, 2006, pp. 3758-3765.

[7]   J. Vinsova, K. Cermakova, A. Tomeckova, M. Ceckova, J. Jampilek, P. Cermak, J. Kunes, M. Dolezal and F. Staud, “Synthesis and Antimicrobial Evaluation of New 2-Substituted 5,7-Di-tert-butylbenzoxazoles,” Bioorganic & Medicinal Chemistry, Vol. 14, No. 17, 2006, pp. 5850-5865.

[8]   J. M. Tebbe, A. W. Spitzer, F. Victor, C. S. Miller, C. C. Lee, R. T. Sattelberg, Sr E. McKinney and C. Joseph, “Antirhino/Enteroviral Vinylacetylene Benzimidazoles:A Study of Their Activity and Oral Plasma Levels in Mice,” Journal of Medicinal Chemistry, Vol. 40, No. 24, 1997, pp. 3937-3947.

[9]   R. Trivedi, K. Surya De and A. R. Gibbs, “A Convenient One-Pot Synthesis of 2-Substituted Benzimidazoles,” Journal of Molecular Catalysis A, Vol. 245, No. 1-2, 2006, pp. 8-11.

[10]   Y. Bai, J. Lu, Z. Shi and B. Yang, “Synthesis of 2,15-Hexadecanedione as a Precursor of Muscone,” Synlett, Vol. 4, 2001, pp. 544-546.

[11]   E. Hasegawa, A. Yoneoka, K. Suzuki, T. Kato, T. Kitazume and K. Yanagi, “Reductive Transformation of α,β-Epoxy Ketones and Other Compounds Promoted through Photoinduced Electron Transfer Processes with 1,3-Dimethyl-2-phenylbenzimidazoline (DMPBI),” Tetrahedron, Vol. 55, 1999, pp. 12957-12968.

[12]   M. R. Grimmet, “4.08-Imidazoles and Their Benzo Derivatives: (iii) Synthesis and Applications,” In: A. R. Katritzky, C. W. Rees and K. T. Potts, Eds., Comprehensive Heterocyclic Chemistry, Pergamon Press, New York, Vol. 5, 1984, p. 457.

[13]   J. B. Wright, “The Chemistry of the Benzimidazoles,” Chemical Reviews, Vol. 48, 1951, pp. 397-541.

[14]   R. W. Middleton and D. G. Wibberley, “Synthesis of Imidazo[4,5-b]-and [4,5-c]Pyridines,” Journal of Heterocyclic Chemistry, Vol. 17, No. 8, 1980, pp. 1757-1760.

[15]   T. Hisano, M. Ichikawa, K. Tsumoto and M. Tasaki, “Synthesis of Benzoxazoles, Benzothiazoles and Benzimidazoles and Evaluation of Their Antifungal, Insecticidal and Herbicidal Activities,” Chemical & Pharmaceutical Bulletin, Vol. 30, 1982, p. 2996.

[16]   J. D. Geratz, F. M. Stevens, K. L. Polakoski and R. F. Parrish, “Amidino-Substituted Aromatic Heterocycles as Probes of the Specificity Pocket of Trypsin-Like Proteases,” Archives of Biochemistry and Biophysics, Vol. 197, No. 2, 1979, pp. 551-559.

[17]   A. Czarny, W. D. Wilson and W. D. Boykin, “Synthesis of Mono-Cationic and Dicationic Analogs of Hoechst 33258,” Journal of Heterocyclic Chemistry, Vol. 33, No. 4, 1996, pp. 1393-1397.

[18]   R. R. Tidwell, J. D. Geratz, O. Dann, G. D. Volz Zeh and H. Loew, “Diarylamidine Derivatives with One or Both of the Aryl Moieties Consisting of an Indole or Indole-Like Ring. Inhibitors of Arginine-Specific Esteroproteases,” Journal of Medicinal Chemistry, Vol. 21, No. 7, 1978, pp. 613-623.

[19]   T. A. Fairley, R. R. Tidwell, I. Donkor, N. A. Naiman, K. A. Ohemeng, R. J. Lombardy, J. A. Bentley and M. Cory, “Structure, DNA Minor Groove Binding, and Base Pair Specificity of Alkyland Aryl-Linked Bis(amidinobenzimidazoles) and Bis(amidinoindoles),” Journal of Medicinal Chemistry, Vol. 36, No. 12, 1993, pp. 1746-1753.

[20]   K. Bougrin, A. Loupy and M. Soufiaoui, “Trois Nouvelles Voies de Synthèse des Dérivés 1,3-Azoliques sous Micro-Ondes,” Tetrahedron, Vol. 54, No. 28, 1998, pp. 8055-8064.

[21]   G. V. Reddy, V. V. V. N. S. Rama Rao, B. Narsaiah and P. S. Rao, “A Simple and Efficient Method for the Synthesis of Novel Trifluoromethyl Benzimidazoles under Microwave Irradiation Conditions,” Synthetic Communications, Vol. 32, No. 16, 2002, pp. 2467-2476.

[22]   A. Ben-Alloum, S. Bakkas and M. Soufiaoui, “Benzimidazoles Oxydation Hétérocyclisante par le Nitrobenzène ou le Diméthylsulfoxyde sur Silice et sous Irradiation Micro-Ondes ou Ultra-Violet,” Tetrahedron Letters, Vol. 39, 1998, pp. 4481-4484.

[23]   Y. Kawashita, N. Nakamichi, H. Kawabata and M. Hayashi, “Direct and Practical Synthesis of 2-Arylbenzoxazoles Promoted by Activated Carbon,” Organic Letters, Vol. 5, No. 20, 2003, pp. 3713-3715.

[24]   H. Sharghi, O. Asemani and R. Khalifeh, “New One-Pot Procedure for the Synthesis of 2-Substituted Benzimidazoles,” Synthetic Communications, Vol. 38, No. 7, 2008, pp. 1128-1136.

[25]   W. R. Middleton and G. Wibberley, “Synthesis of Imidazo [4,5-b]-and [4,5-c] Pyridines,” Journal of Heterocyclic Chemistry, Vol. 17, 1980, pp. 1757-1760.

[26]   F. F. Stephens and J. D. Bower, “The Preparation of Benziminazoles and Benzoxazoles from Schiff's Bases. Part I,” Journal of the Chemical Society, 1949, pp. 2971-2972.

[27]   H. Chikashita, S. Nishida, M. Miyazaki, Y. Morita and K. Itoh, “In Situ Generation and Synthetic Application of 2-Phenylbenzimidazoline to the Selective Reduction of Carbon-Carbon Double Bonds of Electron-Deficient Olefins,” Bulletin of the Chemical Society of Japan, Vol. 60, No. 2, 1987, p. 737.

[28]   S. Kumar, V. Kansal and A. Bhaduri, Indian Journal of Chemistry, Vol. 20, 1991, p. 254.

[29]   F. Patzold, F. Zeuner, T. H. Heyer and H. Niclas, “Dehydrogenations Using Benzofuroxan as Oxidant,” Synthetic Communications, Vol. 22, 1992, pp. 281-288.

[30]   L. R. Lombardy, A. F. Tanious, K. Ramachandra, R. R. Tidwell and W. D. Wilson, “Synthesis and DNA Interactions of Benzimidazole Dications Which Have Activity against Opportunistic Infections,” Journal of Medicinal Chemistry, Vol. 39, No. 7, 1996, pp. 1452-1462.

[31]   P. L. Beaulieu, B. Hache and E. V. Moos, “A Practical Oxone®-Mediated, High-Throughput, Solution-Phase Synthesis of Benzimidazoles from 1,2-Phenylenediamines and Aldehydes and Its Application to Preparative Scale Synthesis,” Synthesis, Vol. 11, 2003, p. 1683.

[32]   M. A. Chari, D. Shobha, S. M. J. Zaidi, B. V. S. Reddy and A. Vinu, “Nanoporous Aluminosilicate Catalyst with 3D Cage-Type Porous Structure as an Efficient Catalyst for the Synthesis of Benzimidazole Derivatives,” Tetrahedron Letters, Vol. 51, No. 39, 2010, pp. 5195-5199.

[33]   M. A. Chari, D. Shobha and T. Sasaki, “Room Temperature Synthesis of Benzimidazole Derivatives Using Reusable Cobalt Hydroxide and Cobalt Oxide as an Efficient Solid Catalysts,” Tetrahedron Letters, Vol. 52, 2011, pp. 5575-5580.

[34]   H. Jin, X. Xu, J. Gao, J. Zhong and Y. Wang, “Copper-Catalyzed One-Pot Synthesis of Substituted Benzimidazoles,” Advanced Synthesis & Catalysis, Vol. 352, No. 2-3, 2010, pp. 347-350.

[35]   A. Dyer, “Zeolite Molecular Sieves,” Wiley-VCH, Weinheim, 1988.

[36]   C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature, Vol. 359, 1992, p. 710.

[37]   D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures,” Journal of the American Chemical Society, Vol. 120, No. 24, 1998, pp. 6024-6034.

[38]   D. Zhao, J. Feng, Q. Huo, N. Melosh, G. Fredrikson, B. F. Chmelka and G. D. Stucky, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,” Science, Vol. 279, 1998, pp. 548-552.

[39]   A. Vinu, P. Srinivasu, M. Miyahara and K. Ariga, “Preparation and Catalytic Performances of Ultralarge-Pore TiSBA-15 Mesoporous Molecular Sieves with Very High Ti Content,” Journal of Physical Chemistry B, Vol. 110, No. 2, 2006, pp. 801-806.

[40]   A. Vinu, K. Z. Hossain, G. S. Kumar and K. Ariga, “Adsorption of l-Histidine over Mesoporous Carbon Molecular Sieves,” Carbon, Vol. 44, No. 3, 2006, pp. 530-536.

[41]   G. W. Breton, “Selective Monoacetylation of Unsymmetrical Diols Catalyzed by Silica Gel-Supported Sodium Hydrogen Sulfate,” Journal of Organic Chemistry, Vol. 62, No. 25, 1997, pp. 8952-8954.

[42]   M. A. Chari and K. Syamasundar, “Polymer (PVP) Supported Ferric Chloride: An Efficient and Recyclable Heterogeneous Catalyst for High Yield Synthesis of 1,5-Benzodiazepine Derivatives under Solvent Free Conditions and Microwave Irradiation,” Catalysis Communications, Vol. 6, No. 1, 2005, pp. 67-70.

[43]   J. Yang and T. Sasaki, “Synthesis of CoOOH Hierarchically Hollow Spheres by Nanorod Self-Assembly through Bubble Templating,” Chemistry of Materials, Vol. 20, No. 5, 2008, p. 2049.

[44]   J. Yang, H. Hyodo, K. Kimura and T. Sasaki, “Co(OH)3 Nanobelts: Synthesis, Characterization and Shape-Preserved Transformation to Pseudo-Single-Crystalline Co3O4 Nanobelts,” Nanotechnology, Vol. 21, 2010, Article ID: 045605.

[45]   J. Yang and T. Sasaki, “Morphological Control of Single Crystalline Co3O4 Polyhedrons: Selective and Nonselective Growth of Crystal Planes Directed by Differently Charged Surfactants and Solvents,” Crystal Growth & Design, Vol. 10, No. 3, 2010, pp. 1233-1236.

[46]   M. A. Chari, D. Shobha and T. Sasaki, “Room Temperature Synthesis of Benzimidazole Derivatives Using Reusable Cobalt Hydroxide (II) and Cobalt Oxide (II) as Efficient Solid Catalysts,” Tetrahedron Letters, Vol. 52, No. 43, 2011, pp. 5575-5580.

[47]   J. Smith and I. Ho “Organic Redox Reactions during the Interaction of o-Phenylenediamine with Benzaldehyde,” Tetrahedron Letters, Vol. 12, No. 38, 1971, pp. 3541-3544.

[48]   A. T. Khan, T. Parvin and L. H. Choudhury, “A Simple and Convenient One-Pot Synthesis of Benzimidazole Derivatives Using Cobalt (II) Chloride Hexahydrate as Catalyst,” Synthetic Communications, Vol. 39, No. 13, 2009, pp. 2339-2346.