IJG  Vol.4 No.10 , December 2013
Life on Earth Originated Where Later Microbial Oxygenic Photosynthesis Precipitated Banded Iron Formation, Suppressing Life Diversification for 1.4 Ga
Abstract: The earliest Precambrian microbial structures appear in successions with banded iron formations (BIF) suggesting genetic relationships. The hypothesis of the deep ocean origin of BIFs associated with Mid-Ocean Ridge (MOR) like features seems to have been recently supported by the discovery of peculiar microbial ecosystems with unique faunal assemblages restricted to these volcanic vents. However, new sedimentological evidence points to the accumulation of varved BIF in huge, very shallow lakes of hydrothermal-water situated on continental plates while passing through thePolar Regions, where UV radiation is minimal. The mineral-rich solutions seeped from numerous fumaroles, providing suitable conditions for chemical reactions between inorganic components, incidentally creating organic-like self-multiplying molecules long before the biologically-initiated BIF deposition. Some of these early chemoautotrophic prokaryotes developed oxygenic photosynthesis during half a year of solar illumination. The released oxygen formed iron oxides and carbonates deposited with amorphous silica (geyserite) in laminae as BIF during 3.8 - 1.9 Ga. BIF deposition consumed most of the photosynthetic oxygen for 1.4 billion years. Intensified cyanobacteria oxygenic photosynthesis during 2.4 - 2.2 Ga raised the atmospheric oxygen content (Great Oxidation Event) over the Polar Regions, forming an oxygen-ozone shield against UV radiation. It gradually extended to lower latitudes, enabling prokaryotes to leave their ecologically stable habitat and acclimatize in new ecosystems, where they diversified, leading to eukaryote evolution. The 231/2° inclination of Earth’s rotation axis differentiated the solar effect on the Polar Regions, which controlled life evolution on Earth, as well as on planet Mars (25° inclination), where life probably did not evolve beyond early prokaryotes.
Cite this paper: Z. Lewy, "Life on Earth Originated Where Later Microbial Oxygenic Photosynthesis Precipitated Banded Iron Formation, Suppressing Life Diversification for 1.4 Ga," International Journal of Geosciences, Vol. 4 No. 10, 2013, pp. 1382-1391. doi: 10.4236/ijg.2013.410135.

[1]   S. L. Miller, “A Production of Amino Acids under Possible Primitive Earth Conditions,” Science, Vol. 117, No. 3046, 1953, pp. 528-529.

[2]   S. L. Miller and H. C. Urey, “Organic Compound Synthesis on the Primitive Earth,” Science, Vol. 130, No. 3370, 1959, pp. 245-251.

[3]   J. L. Bada and A. Lazcano, “Prebiotic Soup-Revising the Miller Experiment,” Science Vol. 300, No. 5620, 2003, pp. 745-746.

[4]   A. P. Johnson, H. J. Cleaves, J. P. Dworkin, D. P. Glavin, A. Lazcano and J. L. Bada, “The Miller Volcanic Spark Discharge Experiment,” Science, Vol. 322, No. 5900, 2008, p. 404.

[5]   S. L. Miller and J. L. Bada, “Submarine Hot Springs and the Origin of Life,” Nature, Vol. 334, 1988, pp. 609-611.

[6]   W. Martin and M. J. Russell, “On the Origins of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells,” Philosophical Transactions of the Royal Society B, Vol. 358, No. 1429, 2002, pp. 59-85.

[7]   M. J. Russell and A. J. Hall, “The Emergence of Life from Iron Monosulphide Bubbles at a Submarine Hydrothermal Redox and pH Front,” Journal of the Geological Society of London, Vol. 154, No. 3, 1997, pp. 477-402.

[8]   D. S. Kelley, J. A. Karson, D. K. Blackman, G. L. Fruh-Green, D. A. Butterfield, M. D. Lilley, E. J. Olson, M. O. Schrenk, K. K. Roe, G. T. Lebon, P. Rivizzigno and the AT3-60 Shipboard Party, “An Off-Axis Hydrothermal Vent Field near the Mid-Atlantic Ridge at 30° N,” Nature, Vol. 412, 2001, pp. 145-149.

[9]   W. Martin, J. Barross, D. Kelley and M. J. Russell, “Hydrothermal Vents and the Origin of Life,” Nature Reviews in Microbiology, Vol. 6, 2008, pp. 805-814.

[10]   N. Lane, J. F. Allen and W. Martin, “How Did LUCA Make a Living? Chemiosmosis in the Origin of Life,” Bioessays, Vol. 32, No. 4, 2010, pp. 271-280.

[11]   Z. Lewy, “Banded Iron Formations (BIFs) and Associated Sediments Do Not Reflect the Physical and Chemical Properties of Early Precambrian Seas,” International Journal of Geosciences, Vol. 3, 2012, pp. 226-236.

[12]   M. J. Russell, J. K. Ingham, V. Zedef, D. Maktav, F. Sunar, A. J. Hall and A. E. Fallick, “Search for Signs of Ancient Life on Mars: Expectations from Hydromagnesite Microbialites, Salda Lake, Turkey,” Journal of the Geological Society of London, Vol. 156, No. 5, 1999, pp. 869-888.

[13]   H. J. Melosh, “Exchange of Meteorites (and Life?) between Stellar Systems,” Astrobiology, Vol. 3, No. 1, 2003, pp. 207-215.

[14]   Z. Martins, O. Watson, M. L. Fogel, M. A. Sephton, D. P. Glavin, J. S. Watson, J. P. Dworkin, A. W. Schwartz and P. Ehrenfreund, “Extraterrestrial Nucleobases in the Murchison Meteorite,” Earth and Planetary Science Letters, Vol. 270, No. 1-2, 2008, pp. 130-136.

[15]   P. Schmitt-Kopplin, Z. Gabelica, R. D. Gougeon, A. Fekete, B. Kanawati, M. Harir, I. Gebefuegi, G. Eckel and N. Hertkorn, “High Molecular Diversity of Extraterrestrial Organic Matter in Murchison Meteorite Revealed 40 Years after Its Fall,” PNAS, Vol. 107, No. 7, 2010, pp. 2763-2768.

[16]   M. A. Line, “The Enigma of the Origin of Life and Its Timing,” Microbiology, Vol. 148, 2002, pp. 21-27.

[17]   Z. Lewy, “Early Precambrian Banded Iron Formations: Biochemical Precipitates from Highly Evaporated Hydrothermal Solutions of Polar Region Lakes,” Carbonates and Evaporites, Vol. 24, No. 1, 2009, pp. 1-15.

[18]   K. A. Eriksson, B. Krapez and P. W. Fralick, “Sedimentology of Archean Greenstone Belts: Signature of Tectonic Evolution,” Earth Science Reviews, Vol. 37, No. 1-2, 1994, pp. 1-88.

[19]   A. F. Trendall and J. G. Blockley, “Precambrian Iron-Formation,” In: P. G. Eriksson, W. Altermann, D. R. Nelson, W.U. Mueller and O. Catuneanu, Eds., The Precambrian Earth. Tempos and Events. Developments in Precambrian Geology, Vol. 12, 2004, pp. 403-421.

[20]   A. Bekker, J. F. Slack, N. Planavsky, B. Krapez, A. Hofmann, K. O. Konhauser and J. R. Oliver, “Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes,” Economic Geology, Vol. 105, No. 3, 2010, pp. 467-508.

[21]   R. C. Morris, “Genetic Modelling for Banded Iron-Formation of the Hamersley Group, Pilbara Craton, Western Australia,” Precambrian Research, Vol. 60, No. 1-4, 1993, pp. 243-286.

[22]   H. D. Holland, “The Oceans: A Possible Source of Iron in Iron-Formations,” Economic Geology, Vol. 68, No. 7, 1973, pp. 1169-1172.

[23]   M. E. Barley, J. S. R. Dunlop, J. E. Glover and D. I. Groves, “Sedimentary Evidence for an Archaean Shallow-Water Volcanic-Sedimentasry Facies, Eastern Pilbara Block, Western Australia,” Earth and Planetary Science Letters, Vol. 43, No. 1, 1979, pp. 74-84.

[24]   R. Buick and J. S. R. Dunlop, “Evaporitic Sediments of Early Archaean Age from the Warrawoona Group, North Pole, Western Australia,” Sedimentology, Vol. 37, No. 2, 1990, pp. 247-277.

[25]   K. Sugitani, K. Mimura, K. Suzuki, K. Nagamine and R. Sugisaki, “Stratigraphy and Sedimentasry Petrology of an Archean Volcanic-Sedimentary Succession at Mt. Goldsworthy in the Pilbara Block, Western Australia: Implications of Evaporate (Nahcolite) and Barite Deposition,” Precambrian Research, Vol. 120, No. 1-2, 2003, pp. 55-79.

[26]   D. R. Lowe and L. P. Knauth, “Sedimentology of the Onverwacht Group (3.4 Billion Years), Transvaal, South Africa, and Its Bearing on the Characteristics and Evolution of the Early Earth,” Journal of Geology, Vol. 85, No. 6, 1977, pp. 699-723.

[27]   F. Westall, C. E. J. de Ronde, G. Southam, N. Grassineau, M. Colas, C. Cockell and H. Lammer, “Implications of a 3.472-3.33 Ga-Old Subaerial Microbial Mat from the Barberton Greenstone Belt, South Africa for the UV Environmental Conditions on the Early Earth,” Philosophical Transactions of the Royal Society B, Vol. 361, No. 1474, 2006, pp. 1857-1875.

[28]   K. Sugitani, F. Yamashita, T. Nagaoka, M. Minami and K. Yamamoto, “Geochemistry of Heavily Altered Archean Volcanic and Volcaniclastic Rocks of the Warrawoona Group, at Mt. Goldsworthy in the Pilbara Craton, Western Australia: Implications for Alteration and Origin,” Geochemical Journal, Vol. 40, No. 5, 2006, pp. 523-535.

[29]   M. G. Green, P. J. Sylvester and R. Buick, “Growth and Recycling of Early Archaean Continental Crust: Geochemical Evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia,” Tectonophysics, Vol. 322, No. 1-2, 2000, pp. 69-88.

[30]   A. F. Trendall and J. G. Blockley, “The Iron-Formations of the Precambrian Hamersley Group, Western Australia, with Special Reference to the Associated Crocidolite,” Western Australia Geological Survey Bulletin, Vol. 119, 1970, pp. 1-365.

[31]   H. P. Eugester and I. Ming-Chou, “The Depositional Environments of Precambrian Banded Iron-Formations,” Economic Geology, Vol. 68, No. 7, 1973, pp. 1144-1168.

[32]   A. L. Pickard, M. E. Barley and B. Krapez, “Deep-Marine Depositional Setting of Banded Iron Formation: Sedimentological Evidence from Interbedded Clastic Sedimentary Rocks in the Early Palaeoproterozoic Dales Gorge Member of Western Australia,” Sedimentary Geology, Vol. 170, No. 1-2, 2004, pp. 37-62.

[33]   C. Klein, “Some Precambrian Banded Iron-Formations (BIFs) from around the World: Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origin,” American Mineralogist, Vol. 90, No. 10, 2005, pp. 1473-1499.

[34]   P. E. Cloud Jr., “Atmospheric and Hydrospheric Evolution on the Primitive Earth,” Science, Vol. 160, No. 3829, 1968, pp. 729-736.

[35]   J. W. Schopf, “Fossil Evidence of Archaean Life,” Philosophical Transactions of the Royal Society B, Vol. 361, No. 1470, 2006, pp. 869-885.

[36]   P. Kenrick and P. Davis, “Fossil Plants,” Smithsonian Books, Washington, 2004, p. 232.

[37]   M. W. McElhinny and M. O. McWilliams, “Precambrian Geodynamics—A Palaeomagnetic View,” Tectonophysics, Vol. 40, No. 1-2, 1977, pp. 137-159.

[38]   M. Idnurm and J. W. Giddings, “Australian Precambrian Polar Wander: A Review,” Precambrian Research, Vol. 40-41, 1988, pp. 61-88.

[39]   J. R. Eggleston and W. E. Dean, “Fresh Water Stromatolitic Bioherms in Green Lake, New York,” In: M. R. Walter, Ed., Stromatolites. Developments in Sedimentology, Vol. 20, Elsevier, Amsterdam, 1976, pp. 479-488.

[40]   M. R. Walter, “Geyserite of Yellowstone National Park: an Example of Abiogenic ‘Stromatolites’,” In: M. R. Walter, Ed., Stromatolites. Developments in Sedimentology, Vol. 20, 1976, pp. 87-112.

[41]   R. Buick, “When did Oxygenic Photosynthesis Evolve?” Philosophical Transactions of the Royal Society B, Vol. 363, No. 1504, 2008, pp. 2731-2743.

[42]   A. D. Czaja, C. M. Johnson, B. L. Beard, E. E. Roden, W. Li and S. Moorbath, “Biological Fe Oxidation Controlled Deposition of Banded Iron Formation in the ca. 3770 Ma Isua Supracrustal Belt (Wests Greenland),” Earth and Planetary Science Letters, Vol. 363, 2013, pp. 192-203.

[43]   P. S. Braterman, A. G. Cairns-Smith and R. W. Sloper, “Photo-Oxidation of Hydrated Fe 2+—Significance for Banded Iron Formations,” Nature, Vol. 303, 1983, pp. 163-164.

[44]   A. G. Cairns-Smith, “Precambrian Solution Photochemistry, Inverse Segregation, and Banded Iron Formation,” Nature, Vol. 276, 1978, pp. 807-808.

[45]   K. O. Konhauser, L. Amskold, S. V. Lalonde, N. R. Posth, A. Kappler and A. Anbar, “Decoupling Photochemical Fe (II) Oxidation from Shallow-Water BIF Deposition,” Earth and Planetary Science Letters, Vol. 258, No. 1-2, 2007, pp. 87-100.

[46]   A. Kappler, C. Pasquero and K. O. Konhauser, “Deposition of Banded Iron Formations by Anoxygenic Phototrophic Fe(II)-Oxidizing Bacteria,” Geology, Vol. 33, No. 11, 2005, pp. 865-868.

[47]   A. F. Trendall, “Varve Cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia,” Economic Geology, Vol. 68, No. 7, 1973, pp. 1089-1097.

[48]   C. J. Bjerrum and D. E. Canfield, “Ocean Productivity before about 1.9 Ga ago Limited by Phosphorous Adsorption onto Iron Oxides,” Nature, Vol. 417, 2002, pp. 159-162.

[49]   F. Robert and M. Chaussidon, “A Palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts,” Nature, 443, , 2006, pp. 969-972.

[50]   E. A. Gaucher, S. Govindarajan and O. K. Ganesh, “Palaeotemperature Trend for Precambrian Life Inferred from Resurrected Proteins,” Nature, Vol. 451, 2008, pp. 704-707.

[51]   T. D. Brock, “Environmental Microbiology of Living Stromatolites,” In: M. R. Walter, Ed., Stromatolites. Developments in Sedimentology, Vol. 20, Elsevier, Amsterdam, 1976, pp. 141-148.

[52]   Geology com, “Lightening map by NASA,” 2005-2011.

[53]   N. Lane, “Chances or Necessity? Bioenergetics and the Probability of Life,” Journal of Cosmology, Vol. 10, 2010, pp. 3286-3304.

[54]   C. S. Cockell, “Biological Effect of Highultraviolet Radiation on Early Earth – A Theoretical Evaluation,” Journal of Theoretical Biology, Vol. 198, No. 4, 1998, pp. 717-729.

[55]   E. G. Nisbet and N. H. Sleep, “The Habitat and Nature of Early Life,” Nature, Vol. 409, 2001, pp. 1083-1091.

[56]   N. Lane, “The Cradle of Life,” New Scientist, Vol. 17, No. 2730, 2009, pp. 38-42.

[57]   J. H. McClendon, “The Origin of Life,” Earth Science Reviews, Vol. 47, No. 1-2, 1999, pp. 71-93.

[58]   N. Noffke, K. E. Eriksson, R. M. Hazen and E. L. Simpson, “A New Window into Early Archaean Life: Microbial Mats in Earth’s Oldest Siliciclastic Tidal Deposits (3.2 Ga Moodies Group, South Africa),” Geology, Vol. 34, No. 4, 2006, pp. 253-256.

[59]   M. T. Rosing and R. Frei, “U-rich Archaean Sea-Floor Sediments from Greenland: Indications of >3700 Ma Oxygenic Photosynthesis,” Earth and Planetary Science Letters, Vol. 217, No. 3-4, 2004, 237-244.

[60]   J. F. Allen and W. F. Vermaas, “Evolution of Photosynthesis,” Encyclopedia of Life Sciences, John Wiley & Sons, Chichester, 2010, pp. 1-11.

[61]   R. E. Blankenship, “Early Evolution of Photosynthesis,” Plant Physiolgy, Vol. 154, No. 2, 2010, pp. 434-438.

[62]   F. U. Battistuzzi, A. Feijao and S. B. Hedges, “A Genomic Timescale of Prokaryote Evolution: Insights into the Origin of Metanogenesis, Phototrophy, and the Colonization of Land,” BMC Evolutionary Biology, Vol. 4, 2004, p. 44.

[63]   B. E. Schirrmeister, J. M. de Vos, A. Antonelli and H. C. Bagheri, “Evolution of Multicellularity Coincided with Increased Diversification of Cyanobacteria and the Great Oxidation Event,” PNAS, Vol. 110, 2013, pp. 1791-1796. doi:10.1073/pnas.12099271/-/DCSupplemental

[64]   A. Bekker, H. D. Holland, P. L. Wang, D. Rumble III, H. Stein, J. L. Hannah, L. L. Coetzee and N. J. Beukes, “Dating the Rise of Atmospheric Oxygen,” Nature, Vol. 427, 2004, pp. 117-120.

[65]   A. H. Knoll, E. J. Javaux, D. Hewitt and P. Cohen, “Eukaryotic Organisms in Proterozoic Oceans,” Philosophical Transactions of the Royal Society B, Vol. 361, No. 1470, 2006, pp. 1023-1038.

[66]   B. Rasmussen, I. R. Fletcher, J. J. Brocks and M. Kilburn, “Reassessing the First Appearance of Eukaryotes and Cyanobacteria,” Nature, Vol. 455, No. 7216, 2008, pp. 1101-1104.

[67]   E. J. Javaux, C. P. Marshall and A. Bekker, “Organic-Walled Microfossils in 3.2-Billion-Years-Old Shallow-Marine Siliciclastic Deposits,” Nature, Vol. 463, No. 7283, 2010, pp. 934-938.