Back
 PP  Vol.4 No.9 , December 2013
In Vitro Preliminary Evidences on the Antioxidant Properties of Biogenic Amines
Abstract: Antioxidant properties of the principal biogenic amines were determined in vitro by four analytical methods—Folin Ciocalteu, DPPH, enzymatic and inhibition of lipid peroxidation—in order to avoid possible measuring-method linked mistakes. Different results are obtained, depending on the parameters that each of them measures. The combination of the data indicates that all examined amines show antioxidant characteristics: in particular, tyramine, serotonin, L-norepinephrine, (-)-epinephrine and dopamine owing to their (poly)phenolic structure too, while aliphatic polyamines-spermine, spermidine, putrescine and cadaverine-histamine, melatonin and tryptamine appear to act specifically on the oxygen-consuming species involved in the lipid peroxidation of polyunsaturated fatty acids.
Cite this paper: R. Stevanato, M. Bertelle and S. Fabris, "In Vitro Preliminary Evidences on the Antioxidant Properties of Biogenic Amines," Pharmacology & Pharmacy, Vol. 4 No. 9, 2013, pp. 696-700. doi: 10.4236/pp.2013.49097.
References

[1]   S. H. Snyder, “Drug and Neurotransmitter Receptors in the Brain,” Science, Vol. 224, No. 4644, 1984, pp. 22-31.
http://dx.doi.org/10.1126/science.6322304

[2]   S. Surendran and S. Rajasankar, “Parkinson’s Disease: Oxidative Stress and Therapeutic Approaches,” Neurological Sciences, Vol. 31, No. 5, 2010, pp. 531-540.
http://dx.doi.org/10.1007/s10072-010-0245-1

[3]   C. Tabor and H. Tabor, “Polyamines,” Annual Review of Biochemistry, Vol. 53, 1984, pp. 749-790.
http://dx.doi.org/10.1146/annurev.bi.53.070184.003533

[4]   R. Kaur-Sawhney, A. Altman and W. Galston, “Dual Mechanisms in Polyamine-Mediated Control of Ribonuclease Activity in Oat Leaf Protoplasts,” Plant Physiology, Vol. 2, 1978, pp. 158-160.
http://dx.doi.org/10.1104/pp.62.1.158

[5]   R. Stevanato, A. Wisniewska and F. Momo, “Interaction of Spermine with Dimyristoyl-L-alpha-phosphatidyl-DLglycerol Multilamellar Liposomes,” Archives of Biochemistry and Biophysics, Vol. 346, No. 2, 1997, pp. 203-207.
http://dx.doi.org/10.1006/abbi.1997.0253

[6]   F. Momo, S. Fabris and R. Stevanato, “Interaction of Linear Mono-and Diamines with Dimyristoylphosphatidylcholine and Dimyristoylphosphatidylglycerol Multilamellar Liposomes,” Archives of Biochemistry and Biophysics, Vol. 382, No. 2, 2000, pp. 224-231.
http://dx.doi.org/10.1006/abbi.2000.2014

[7]   J. Smythies, “Redox Aspects of Signalling by Catecolamines and Their Metabolites,” Antioxidants & Redox Signalings, Vol. 2, No. 3, 2000, pp. 575-583.
http://dx.doi.org/10.1089/15230860050192332

[8]   A. Galano, D. Xian Tan and R. J. Reiter, “Melatonin as a Natural Ally against Oxidative Stress: A Physicochemical Examination,” Journal of Pineal Research, Vol. 51, No. 1, 2011, pp. 1-16.
http://dx.doi.org/10.1111/j.1600-079X.2011.00916.x

[9]   H. C. Ha, N. S. Sirisoma, P. Kuppusamy, J. L. Zweier, P. M. Woster and R. A. Casero, “The Natural Polyamine Spermine Functions Directly as a Free Radical Scavenger,” Proceedings of the National Academy of Sciences USA, Vol. 95, No. 19, 1998, pp. 11140-11145.
http://dx.doi.org/10.1073/pnas.95.19.11140

[10]   I. G. Sava, V. Battaglia, C. A. Rossi, M. Salvi and A. Toninello, “Free Radical Scavenging Action of the Natural Polyamine Spermine in Rat Liver Mitochondria,” Free Radicals Biology & Medicine, Vol. 41, No. 8, 2006, pp. 1272-1281.
http://dx.doi.org/10.1016/j.freeradbiomed.2006.07.008

[11]   N. A. Velloso Bellé, G. Dalmolin, G. Fonini, M. A. Rubin and J. B. Teixeira Rocha, “Polyamines Reduces Lipid Peroxidation Induced by Different Pro-Oxidant Agents,” Brain Research, Vol. 1008, No. 2, 2004, pp. 245-251.
http://dx.doi.org/10.1016/j.brainres.2004.02.036

[12]   S. M. Hernandez, M. S. Sanchez and M. N. Schwarcz de Tarlovsky, “Polyamines as a Defense Mechanism against Lipoperoxidation in Trypanosoma Cruzi,” Acta Tropica, Vol. 98, No. 1, 2006, pp. 94-102.
http://dx.doi.org/10.1016/j.actatropica.2006.02.005

[13]   S. Fujisawa and Y. Kadoma, “Kinetic Evaluation of Polyamines as Radical Scavengers,” Anticancer Research, Vol. 25, No. 2A, 2005, pp. 965-970.

[14]   S. Fabris, F. Momo, G. Ravagnan and R. Stevanato, “Antioxidant Properties of Resveratrol and Piceid on Lipid Peroxidation in Micelles and Monolamellar Liposomes,” Biophysical Chemistry, Vol. 135, No. 1-3, 2008, pp. 76-83. http://dx.doi.org/10.1016/j.bpc.2008.03.005

[15]   M. S. Blois, “Antioxidant Determination by the Use of a Stable Free Radical,” Nature, Vol. 181, No. 4617, 1958, pp. 1199-1200. http://dx.doi.org/10.1038/1811199a0

[16]   R. Stevanato, S. Fabris and F. Momo, “New Enzymatic Method for the Determination of Total Phenolic Content in Tea and Wine,” Journal of Agricolture and Food Chemistry, Vol. 52, 2004, 6287-6293.
http://dx.doi.org/10.1021/jf049898s

[17]   E. Gregoris and R. Stevanato, “Correlations between Polyphenolic Composition and Antioxidant Activity of Venetian Propolis,” Food and Chemical Toxicology, Vol. 48, No. 1, 2010, pp. 76-82.
http://dx.doi.org/10.1016/j.fct.2009.09.018

[18]   R. A. Mekheimer, A. A. Radwan Sayed and E. A. Ahmed, “Nobel 1,2,4-Triazolo[1,5-α]pyridines and Their Fused Ring Systems Attenuate Oxidative Stress and Prolong Lifespan of Caenorhabiditis Elegans,” Journal of Medicinal Chemistry, Vol. 55, 2012, pp. 4169-4177.
http://dx.doi.org/10.1021/jm2014315

[19]   R. Stevanato, S. Fabris, M. Bertelle, E. Gregoris and F. Momo, “Phenolic Content and Antioxidant Properties of Fermenting Musts and Fruit and Vegetable Fresh Juices,” Acta Alimentaria, Vol. 38, No. 2, 2009, pp. 93-203.
http://dx.doi.org/10.1556/AAlim.2008.0031

 
 
Top