AS  Vol.4 No.12 , December 2013
Root colonization by mycorrhizal INIFAPMR in barley seed treated with fungicide

The effect of barley seed treated with chlorothalonil fungicide on mycorrhizal root colonization was evaluated. The treatments were: 1) Seed with Mycorrhizal INIFAP?, one, two and three doses, and uninoculated seed; 2) Seed with and without fungicide. Monthly seed plantings were performed with different storage time, looking forward to assessing the colonization degree of the roots. As revealed by the results, the seed treated with chlorothalonil did not lower the root colonization by Mycorrhizal INIFAP?; the chlorothalonil treatment had a 32.63% average root colonization, whereas without chlorothalonil, it was 36.46%. When the seed was treated with root colonization by Mycorrhizal INIFAP?, this was lower in the treatment with one dose; no significant difference was revealed by the treatments with either double or triple doses. The colonization percentage was progressively decreased by seed storage. The root colonization by Mycorrhizal INIFAP?, throughout the inoculated seed storage time, remained constant and unchanged for the first six months, but then decreased in 50% within a 10-month period for both treated and not treated fungicide seed.

Cite this paper: Grageda-Cabrera, O. , González-Figueroa, S. , Lozano-Contreras, M. and Díaz-Franco, A. (2013) Root colonization by mycorrhizal INIFAPMR in barley seed treated with fungicide. Agricultural Sciences, 4, 738-743. doi: 10.4236/as.2013.412100.

[1]   Financiera Rural (2009) Dirección general adjunta de planeación estratégica y análisis sectorial. Monografía Cebada, México.

[2]   Molina, C.J. (1989) La cebada. Editorial Mundi Prensa, Madrid.

[3]   Zamora, D.M., Solano, H.S. and Sevilla, P.E. (2003) The malting barley (Hordeum vulgare L.) essential cereal in the history of the experimental field of the Mexico Valley (CEVAMEX). In: Historical Overview, Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA)-National Institute of Forestry, Agriculture and Livestock (INIFAP), Research Centre of the Central Region (CIRCE), CEVAMEX, Chapingo, State of Mexico, Mexico, 31-38.

[4]   Consejo Poblano de la Cadena Agroindustrial de la Cebada (CPCAC) (2005) Cadena agroindustrial de la cebada. Plan rector del sistema producto cebada. Diagnóstico del sistema producto cebada. Puebla, México.

[5]   Zamora-Díaz, M., Solano-Hernández, S., Gómez-Mercado, R., Rojas-Martínez, I., Ireta-Moreno, J., Garza-García, R. and Ortiz-Trejo, C. (2008) Adabella: Variedad de cebada maltera para valles altos de la mesa central de México. Agricultura Técnica en México, 34, 491-493.

[6]   Solano, S.H., Zamora, M.D., Gámez, P.V., García, J.J.R., Sánchez, R.C., Ireta, J.M., Díaz, F.E. and Garza, R. G. (2009) Alina, nueva variedad de cebada maltera para riego en el Bajío. Agricultura Técnica en México, 35, 471-473.

[7]   Fernández, V.R., Veitía, R.M. and Rodríguez, R.Y. (2011) Compatibilidad entre nuevos plaguicidas químicos sistémicos y el hongo micorrizógeno Glomus intraradices Schenk y Smith. Fitosanidad, 15, 99-105.

[8]   Hernández-Dorrego, A. and Mestre-Parés, J. (2010) Evaluation of some fungicides on mycorrhizal symbiosis between two glomus species from commercial inocula and Allium porrum L. seedlings. Spanish Journal of Agricultural Research, 8, 43-50.

[9]   Phillips, J.M. and Hayman, D.S. (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of indention. Transactions of the British Mycological Society, 55, 158-161.

[10]   Kormanik, P.P., Craig, W.B. and Schultz, R.C. (1980) Procedures and equipment for staining large numbers of plant roots for endomycorrhizal assay. Canadian Journal of Microbiology, 26, 536-538.

[11]   SAS Institute Inc. (1990) SAS/STAT user’s guide, version 6. 4th Edition, SAS Institute, Cary.

[12]   Samarbakhsh, S., Rejali, F., Ardakani, M.R., Nejad, F.P. and Miransari, M. (2009) The combined effects of fungicides and arbuscular mycorrhiza on corn (Zea mays L.) growth and yield under field conditions. Journal of Biological Sciences, 9, 372-379.

[13]   Burrows, R.L. and Ahmed, I. (2007) Fungicide seed treatments minimally affect arbuscular-mycorrhizal fungal (AMF) colonization of selected vegetable crops. Journal of Biological Sciences, 7, 417-420.

[14]   Campagnac, E., Lounès-Hadj, A., Debiane, D., Fontaine, J., Laruelle, F., Garçon, G., Verdin, A., Durand, R., Shirali, P. and Grandmougin-Ferjani, A. (2010) Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid. Mycorrhiza, 20, 167-178.

[15]   Hwang, S.F., Chakravarty, P. and Prevost, D. (1993) Effects of rhizobia, metalaxyl, and VA mycorrhizal fungi on growth, nitrogen fixation, and development of pythium root rot of sainfoin. Plant Disease, 77, 1093-1098.

[16]   Powell, J.R., Campbell, R.G., Dunfield, K.E., Gulden, R.H., Hart, M.M., Levy-Booth, D.J., Klironomos, J.N., Pauls, K.P., Swanton, C.J., Trevors, J.T. and Antunes, P.M. (2009) Effect of glyphosate on the tripartite symbiosis formed by Glomus intraradices, Bradyrhizobium japonicum and genetically modified soybean. Applied Soil Ecology, 41, 128-138.

[17]   Zhang, Z.H., Zhu, Y.G., Lin, A.J., Chen, B.D., Smith, S.E. and Smith, F.A. (2006) Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere, 64, 1627-1632.

[18]   Grageda-Cabrera, O.A. and González-Figueroa, S.S. (2010) Micorriza INIFAPMR, preguntas y respuestas. Desplegable para productores No. 21. INIFAP, México.