On the Markov Chain Binomial Model

Show more

References

[1] S. M. Rudolfer, “A Markov Chain Model of Extrabinomial Variation,” Biometrika, Vol. 77, No. 2, 1990, pp. 255-264. http://dx.doi.org/10.1093/biomet/77.2.255

[2] S. M. Rudolfer, “Correction to a Markov Chain Model of Extrabinomial Variation,” Biometrika, Vol. 78, No. 4, 1991, p. 935.

http://dx.doi.org/10.2307/2336950

[3] A. W. F. Edwards, “The Meaning of Binomial Distribution,” Nature (London), Vol. 186, 1960, p. 1074.

http://dx.doi.org/10.1038/1861074a0

[4] R. Crouchley and A. R. Pickles, “Methods for the Identification of Lexian, Poisson and Markovian Variations in the Secondary Sex Ratio,” Biometrics, Vol. 40, No. 1, 1984, pp. 165-175.

http://dx.doi.org/10.2307/2530755

[5] J. L. Devore, “A Note on the Estimation of Parameters in a Bernoulli Model with Dependence,” Annals of Statistics, Vol. 4, No. 5, 1976, pp. 990-992.

http://dx.doi.org/10.1214/aos/1176343597

[6] A. W. F. Edwards, “Estimation of the Parameters in Short Markov Sequences,” Journal of the Royal Statistical Society, Series B, Vol. 25, No. 1, 1963, pp. 206-208.

[7] J. G. Skellam, “A Probability Distribution Derived from the Binomial Distribution by Regarding the Probability of Success as Variable between the Sets of Trials,” Journal of the Royal Statistical Society, Series B, Vol. 10, No. 2, 1948, pp. 257-261.