Numerical Studies of the Generalized l1Greedy Algorithm for Sparse Signals

Show more

References

[1] E. Candes, J. Romberg and T. Tao, “Stable Signal Recovery from Incomplete and Inaccurate Information,” Communications on Pure and Applied Mathematics, Vol. 59, No. 8, 2005, pp. 1207-1233.

http://dx.doi.org/10.1002/cpa.20124

[2] E. Candes, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information,” IEEE Transactions on Information Theory, Vol. 52, No. 2, 2006, pp. 489-509.

http://dx.doi.org/10.1109/TIT.2005.862083

[3] E. Candes and T. Tao, “Near Optimal Signal Recovery from Random Projections: Universal Encoding Strategies?” IEEE Transactions on Information Theory, Vol. 52, No. 12, 2006, pp. 5406-5425.

http://dx.doi.org/10.1109/TIT.2006.885507

[4] E. Candes and M. Wakin, “An Introduction to Compressive Sampling,” IEEE Signal Processing Magazine, Vol. 25, No. 2, 2008, pp. 21-30.

http://dx.doi.org/10.1109/MSP.2007.914731

[5] D. Donoho, “Compressed Sensing,” IEEE Transactions on Information Theory, Vol. 52, No. 4, 2006, pp. 1289-1306. http://dx.doi.org/10.1109/TIT.2006.871582

[6] S. Chen, D. Donoho and M. Saunders, “Atomic Decomposition by Basis Pursuit,” SIAM Journal on Scientific Computing, Vol. 20, No. 1, 1998, pp. 33-61.

http://dx.doi.org/10.1137/S1064827596304010

[7] D. Donoho and B. F. Logan, “Signal Recovery and the Large Sieve,” SIAM Journal on Applied Mathematics, Vol. 52, No. 2, 1992, pp. 577-591.

http://dx.doi.org/10.1137/0152031

[8] D. Donoho and P. B. Stark, “Uncertainty Principles and Signal Recovery,” SIAM Journal on Applied Mathematics, Vol. 49, No. 3, 1989, pp. 906-931.

http://dx.doi.org/10.1137/0149053

[9] F. Santosa and W. Symes, “Linear Inversion of Band-Limited Reflection Seismograms,” SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 4, 1986, pp. 1307-1330. http://dx.doi.org/10.1137/0907087

[10] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society: Series B, Vol. 58, 1996, pp. 267-288.

[11] E. J. Candes, M. B. Wakin and S. P. Boyed, “Enhancing Sparsity by Reweighted l1 Minimization,” Journal of Fourier Analysis Applications, Vol. 14, No. 5-6, 2008, pp. 877-905. http://dx.doi.org/10.1007/s00041-008-9045-x

[12] I. Kozlov and A. Petukhov, “Sparse Solutions of Underdetermined Linear Systems,” Handbook of Geomathematics, Springer, New York, 2010, pp. 1243-1260.

http://dx.doi.org/10.1007/978-3-642-01546-5_42

[13] S. Foucarts and M. J. Lai, “Sparsest Solutions of Underdetermined Linear Systems via lq-Minimization for 0 < q ≤ 1,” Applied and Computational Harmonic Analysis, Vol. 26, No. 3, 2009, pp. 395-407.

http://dx.doi.org/10.1016/j.acha.2008.09.001

[14] M. J. Lai, “On Sparse Solutions of Underdetermined Linear Systems,” Journal of Concrete and Applicable Mathematics, Vol. 8, 2010, pp. 296-327.

[15] A. Khajehnejad, W. Xu, S. Avestimher and B. Hassibi, “Improved Sparse Recovery Thresholds with Two-Step Reweighted l1-Minimization,” IEEE International Symposium on Information Theory Proceedings, 2010.

[16] A. Khajehnejad, W. Xu, S. Avestimher and B. Hassibi, “Analyzing Weight l1-Minimization for Sparse Recovery with Nonuniform Sparse Models,” IEEE Transaction on Signal Processing, Vol. 59, No. 5, 2011, pp. 1985-2001.

http://dx.doi.org/10.1109/TSP.2011.2107904

[17] D. Needell, ”Noisy Signal Recovery via Iterative Reweighted l1-Minimization,” Proceedings of 43rd Annual Asilomar Conference on Signals, Systems, and Computers, 2009, pp. 113-117.

[18] Y. B. Zhao and D. Li, “Reweighted l1-Minimization for Sparse Solutions to Underdetermined Linear Systems,” SIAM Journal on Optimization, Vol. 22, No. 3, 2012, pp. 1065-1088. http://dx.doi.org/10.1137/110847445

[19] A. Petukhov and I. Kozlov, ”Fast Implementation of l1 Greedy Algorithm,” Recent Advances in Harmonic Analysis Applications, Springer Proceedings in Mathematics & Statistics, Vol. 25, 2013, pp. 317-326.

http://dx.doi.org/10.1007/978-1-4614-4565-4_25

[20] J. Zhu and X. Li, “A Generalized l1 Greedy Algorithm for Image Reconstruction in CT,” Applied Mathematics and Computation, Vol. 219, No. 10, 2013, pp. 5487-5494.

http://dx.doi.org/10.1016/j.amc.2012.11.052