ACES  Vol.1 No.1 , January 2011
Halloysite Nanotubes Supported Gold Catalyst for Cyclohexene Oxidation with Molecular Oxygen
Abstract: The selective oxidation of cyclohexene to 2-cyclohexene-1-ol and 2-cyclohexene-1-one has been investi-gated over Au/HNTs (HNTs: halloysite nanotubes) catalysts with molecular oxygen in a solvent-free system. The catalysts were prepared by deposition precipitation method and characterized by ICP-AES, TEM and XRD. The results show that the catalytic performance of Au/HNTs is quite well and the catalytic activity over recycled catalyst remains highly. Moreover, the nano-size effect of gold is also reported for the reaction.
Cite this paper: nullCai, Z. , Zhu, M. , Dai, H. , Liu, Y. , Mao, J. , Chen, X. and He, C. (2011) Halloysite Nanotubes Supported Gold Catalyst for Cyclohexene Oxidation with Molecular Oxygen. Advances in Chemical Engineering and Science, 1, 15-19. doi: 10.4236/aces.2011.11003.

[1]   S. Mukherjee, S. Samanta, B. C. Roy and A. Bhaumik, “Efficient Allylic Oxidation of Cyclohexene Catalyzed by Immobilized Schiff Base Complex Using Peroxides as Oxidants,” Applied Catalysis A, Vol. 301, No. 1, 2006, pp. 79-88.

[2]   A. E. Shilov and G. B. Shul’pin, “Activation of C-H Bonds by Metal Complexes,” Chemical Reviews, Vol. 97, No. 8, 1997, pp. 2879-2932. doi:10.1021/cr9411886

[3]   R. Luque, S. K. Badamali, J. H. Clark, M. Fleming and D. J. Macquarrie, “Controlling Selectivity in Catalysis: Selective Greener Oxidation of Cyclohexene under Microwave Conditions,” Applied Catalysis A, Vol. 341, 2008, pp. 154-159.

[4]   Z. Y. Cai, M. Q. Zhu, J. Chen, Y. Y. Shen, J. Zhao, Y. Tang and X. Z. Chen, “Solvent-Free Oxidation of Cyclohexene over Catalysts Au/OMS-2 and Au/La-OMS-2 with Molecular Oxygen,” Catalysis Communications, Vol. 12, No. 3, 2010, pp. 197-201. doi:10.1016/j.catcom. 2010.09.014

[5]   Z. H. Weng, J. Y. Wang, S. H. Zhang, C. Yan and X. G. Jian, “Efficient Oxidation of Cyclohexene over Tetrakis (Diperoxomolybdo) Phosphate Immobilized on Poly (Phthalazinone Ether Sulfone Ketone) with Hydrogen Peroxide,” Applied Catalysis A, Vol. 339, No. 2, 2008, pp. 145-150.

[6]   X. J. Meng, K. F. Lin, X. Y. Yang, Z. H. Sun, D. Z Jiang and F. S. Xiao, “Catalytic Oxidation of Olefins and Alcohols by Molecular Oxygen under Air Pressure over Cu2(OH)PO4 and Cu4O(PO4)2 Catalysts,” Journal of Catalysis, Vol. 218, No. 2, 2003, pp. 460-464. doi:10.1016/ S0021-9517(03)00079-4

[7]   S. E. Dapurkar, H. Kawanami, K. Komura, T. Yokoyama and Y. Ikushima, “Solvent-Free Allylic Oxidation of Cycloolefins over Mesoporous CrMCM-41 Molecular Sieve Catalyst at 1 atm Dioxygen,” Applied Catalysis A, Vol. 346, 2008, pp. 112-116.

[8]   L. X. Xu, C. H. He, M. Q. Zhu, K. J. Wu and Y. L. Lai, “Silica-Supported Gold Catalyst Modified by Doping with Titania for Cyclohexane Oxidation,” Catalysis Letters, Vol. 118, 2007, pp. 248-253. doi:10.1007/s10562- 007-9178-6

[9]   N. R. Shiju and V. V. Guliants, “Recent Developments in Catalysis Using Nanostructured Materials,” Applied Catalysis A, Vol. 356, No. 1, 2009, pp. 1-17.

[10]   G. J. Hutching, “Gold Catalysis in Chemical Processing,” Catalysis Today, Vol. 72, 2002, pp. 11-17. doi:10.1016 /S0920-5861(01)00473-4

[11]   J. H. Clark, “Catalysis for Green Chemistry,” Pure and Applied Chemistry, Vol. 73, No. 1, 2001, pp. 103-111. doi:10.1351/pac200173010103

[12]   A. S. K. Hashmi, “The Catalysis Gold Rush: New Claims,” Angewandte Chemie International Edition, Vol. 44, No. 43, 2005, pp. 6990-6993. doi:10.1002/anie.2005 02735

[13]   M. Haruta, T. Kobayashi, H. Sano and N. Yamada, “Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature Far Below 0?C,” Chemistry Letters, 1987, pp. 405-408. doi:10.1246/cl.1987.405

[14]   A. K. Sinha, S. Seelan, S. Tsubota and M. Haruta, “Catalysis by Gold Nanoparticles: Epoxidation of Propene,” Topics in Catalysis, Vol. 29, 2004, pp. 95-102. doi:10.1023/B:TOCA.0000029791.69935.53

[15]   P. Landon, P. J. Collier, A. F. Carley, D. Chadwick, A. J. Papworth, A. Burrows, C. J. Kiely and G. J. Hutchings, “Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Pd and Au Catalysts,” Physical Chemistry Chemical Physics, Vol. 5, 2003, pp. 1917-1923. doi:10.1039/ b211338b

[16]   F. Menegazzo, M. Signoretto, M. Manzoli, F. Boccuzzi, G. Cruciani, F. Pinna and G. Strukul, “Influence of the Preparation Method on the Morphological and Composition Properties of Pd-Au/ZrO2 Catalysts and Their Effect on the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen,” Journal of Catalysis, Vol. 268, No. 1, 2009, pp. 122-130. doi:10.1016/j.jcat.2009.09.010

[17]   L. X. Xu, C. H. He, M. Q. Zhu, K. J. Wu and Y. L. Lai, “Surface Stabilization of Gold by Sol-Gel Post-modification of Alumina Support with Silica for Cyclohexane Oxidation,” Catalysis Communications, Vol. 9, No. 5, 2008, pp. 816-820. doi:10.1016/j.catcom.2007.09.005

[18]   R. Zhao, D. Ji, G. Lv, G. Qian, L. Yan, X. Wang and J. Suo, “A Highly Efficient Oxidation of Cyclohexane over Au/ZSM-5 Molecular Sieve Catalyst with Oxygen as Oxidant,” Chemical Communications, 2004, pp. 904-905. doi:10.1039/b315098d

[19]   K. Zhu, J. C. Hu and R. Richards, “Aerobic Oxidation of Cyclohexane by Gold Nanoparticles Immobilized upon Mesoporous Silica,” Catalysis Letters, Vol. 100, 2005, pp. 195-199. doi:10.1007/s10562-004-3454-5

[20]   M. D. Hughes, Y. J. Xu , P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin and C. J. Kiely, “Tunable Gold Catalysts for Selective Hydrocarbon Oxidation under Mild Conditions,” Nature, Vol. 437, 2005, pp. 1132-1135. doi:10.1038/nature04190

[21]   B. D. Li, P. He, G. Q. Yi, H. Q. Lin and Y. Z. Yuan, “Performance of Gold Nanoparticles Supported on Carbon Nanotubes for Selective Oxidation of Cyclooctene with Use of O2 and TBHP,” Catalysis Letters, Vol. 133, 2009, pp. 33-40. doi:10.1007/s10562-009-0171-0

[22]   L. X. Xu, C. H. He, M. Q. Zhu and S. Fang, “A Highly Active Au/Al2O3 Catalyst for Cyclohexane Oxidation Using Molecular Oxygen,” Catalysis Letters, Vol. 114, 2007, pp. 202-205. doi:10.1007/s10562-007-9058-0

[23]   H. Weiner, A. Trovarelli and R. G. Finke, “Expanded Product, Plus Kinetic and Mechanistic, Studies of Polyoxoanion-based Cyclohexene Oxidation Catalysis: The Detection of ~70 Products at Higher Conversion Leading to a Simple, Product-based Test for the Presence of Olefin Autoxidation,” Journal of Molecular Catalysis A: Chemical, Vol. 191, No. 2, 2003, pp. 217-252. doi: 10.1016/S1381-1169(02)00344-8

[24]   G. B. Shul’pin, Y. N. Kozlov, S. N. Kholuiskaya and M. I. Plieva, “Oxidations by the System ‘Hydrogen Peroxide- [Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-tri-azacyclononane)- oxalic acid’. Part 11. Degradation of Dye Rhodamine 6G and Oxygenation of Cyclohexene,” Journal of Molecular Catalysis A: Chemical, Vol. 299, No. 2, 2009, pp. 77-87.