Back
 ACES  Vol.1 No.1 , January 2011
Investigation of Photocatalytic Degradation of Methyl Orange by Using Nano-Sized ZnO Catalysts
Abstract: Nano-sized ZnO catalysts were prepared by a direct precipitation method under the optimal conditions (cal-cination of precursors at 550?C for 120 min). The as-synthesized ZnO catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-Vis spectroscopy. The photocatalytic prop-erties of ZnO nanoparticles were investigated via methyl orange (MO) as a model organic compound under UV light irradiation. The influence of operating parameters on MO degradation including the amount of ZnO catalysts, pH value of solutions, and the photodegradation temperature was thoroughly examined. In addition, the kinetic process of photocatalytic degradation of MO using nano-sized ZnO catalyst was also examined, and the degradation of MO follow the first order kinetics.
Cite this paper: nullChen, C. , Liu, J. , Liu, P. and Yu, B. (2011) Investigation of Photocatalytic Degradation of Methyl Orange by Using Nano-Sized ZnO Catalysts. Advances in Chemical Engineering and Science, 1, 9-14. doi: 10.4236/aces.2011.11002.
References

[1]   H. Tian, J. F. Ma, K. Li and J. J. Li, “Photocatalytic De- gradation of Methyl Orange with W-doped TiO2 Synthesized by a Hydrothermal Method,” Materials Chemistry and Physics, Vol. 112, 2008, pp. 47-51. doi:10.1016/j.matchemphys.2008.05.005

[2]   N. Daneshvar, D. Salari and A. R. Khataee, “Photocatalytic Degration of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162, 2004, pp. 317-322. doi:10.1016/S1010-6030(03)00378-2

[3]   L. Andronic and A. Duta, “The Influence of TiO2 Powder and Film on the Photodegradation of Methyl Orange,” Materials Chemistry and Physics, Vol. 112, 2008, pp. 1078-1082. doi:10.1016/j.matchemphys.2008.06.059

[4]   Y. Sakata, T. Yamamoto, T. Okazaki, H. Imamura and S. Tsuchiya, “Generation of Visible Light Response on the Photocatalyst of a Copper Ion Containing TiO2,” Chemistry Letters, Vol. 27, 1998, pp. 1253-1257. doi:10.1246/cl.1998.1253

[5]   M. Iwasaki, M. Hara, H. Kawada, H. Tada and S. Ito, “Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light,” Journal of Colloid and Interface Science, Vol. 224, 2000, pp. 202-207. doi:10.1006/jcis.1999.6694

[6]   H. Tian, J. F. Ma, X. Huang, L. J. Xie, Z. Q. Zhao, J. Zhou, P. W. Wu, J. H. Dai, Y. M. Hu, Z. B. Zhu, H. F. Wang and H. Y. Chen, “Nano-Sized Coupled Photocatalyst (Sn0.25Ti0.75)O2 Powders Synthesized by a Low Temperature Molten Salt Method,” Materials Letters, Vol. 59, 2005, pp. 3059-3061. doi:10.1016/j.matlet.2005.05.020

[7]   I. Poulios, M. Kositzi and A. Kouras, “Photocatalytic Decomposition of Trichlopyr over Aqueous Semiconductor Suspensions,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 115, 1998, pp. 175-179. doi:10.1016/S1010-6030(98)00259-7

[8]   J. P. Percherancier, R. Chapelion and B. Pouyet, “Semiconductor Sensitized Photodegradation of Pestcides in Water: The Case of Carbetamide,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 87, 1995, pp. 261-265. doi:10.1016/1010-6030(94)03993-5

[9]   M. C. Yeber, J. Rodriguez, J. Freer, J. Baeza, N. Duran and H. D. Mansilla, “Advanced Oxidation of a Pulp Mill Bleaching Wastewater,” Chemosphere, Vol. 39, 1999, pp. 1679-1683. doi:10.1016/S0045-6535(99)00068-5

[10]   A. A. Khodja, T. Sehili, J. F. Pilichowski and P. Boule, “Photocatalytic Degradation of 2-phenylphenol on TiO2 and ZnO in Aqueous Suspensions,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 141, 2001, pp. 231-236. doi:10.1016/S1010-6030(01)00423-3

[11]   C. Marci, V. Augugliaro, M. J. L. Munoz, C. Martin, L. Palmisano, V. Rives, M. Sehhiavello, R. J. D. Tilley and A. M. Venezia, “Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems,” The Journal of Physical Chemistry B, Vol. 105, No. 5, 2001, pp. 1026-1032. doi:10.1021/jp003172r

[12]   C. Lizama, J. Freer, J. Baeza and H. D. Mansilla, “Optimized Photodegradation of Reactive Blue 19 on TiO2 and ZnO Suspensions,” Catalysis Today, Vol. 76, 2002, pp. 235-239. doi:10.1016/S0920-5861(02)00222-5

[13]   N. Daneshvar, D. Salari and A. R. Khataee, “Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162, 2004, pp. 317-322. doi:10.1016/S1010-6030(03)00378-2

[14]   D. L. Liao, C. A. Badour and B. Q. Liao, “Preparation of Nano-Sized TiO2/ZnO Composite Catalyst and Its Photocatalytic Activity for Degradation of Methyl Orange,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 194, 2008, pp. 11-19. doi:10.1016/jjphotochem. 2007.07.008

[15]   K. Gouvea, F. Wypych, S. G. Moraes, N. Duran, N. Nagata and P. Peralta-Zamora, “Semiconductor-Assisted Photocatalytic Degradation of Reactive Dyes in Aqueous Solution,” Chemosphere, Vol. 40, 2000, pp. 433-440. doi: 10.1016/S0045-6535(99)00313-6

[16]   R. Y. Hong, T. T. Pan, J. Z. Qian and H. Z. Li, “Synthesis and Surface Modification of ZnO Nanoparticles,” Chemical Engineering Journal, Vol. 119, 2006, pp.71-81. doi:10.1016/j.cej.2006.03.003

[17]   R. Y. Hong, J. Z. Qian and J. X. Cao, “Synthesis and Characterization of PMMA Grafted ZnO Nanoparticles,” Powder Technology, Vol. 163, 2006, pp. 160-168. doi: 10.1016/j.powtec.2006.01.015

[18]   R. Y. Hong, L. L. Chen, J. H. Li, H. Z. Li, Y. Zheng and J. Ding, “Preparation and Application of Polystyrene-Grafted ZnO Nanoparticles,” Polymers for Advanced Technologies, Vol. 18, No. 11, 2007, pp. 901-909. doi:10.1002/pat.926

[19]   C. C. Chen, P. Liu and C. H. Lu, “Synthesis and Characterization of Nano-Sized ZnO Powders by Direct Precipitation Method,” Chemical Engineering Journal, Vol. 144, 2008, pp. 509-513. doi:10.1016/j.cej.2008.07.047

[20]   C. C. Chen, P. Liu, J. F. Liu and B. H. Yu, “The Investigation of Photocatalytic Activity of Nano-Sized ZnO Particles Synthesized by a Direct Precipitation Method for Degradation of Methyl Orange,” (submitted to Journal of Photochemistry and Photobiology A: Chemistry).

[21]   C. Chen, B. Yu, J. Liu, Q. Dai, Y. Zhu, “Investigation of ZnO Films on Si(111) Substrate Grown by Low Energy O+ Assisted Pulse Laser Deposited Technology,” Materials Letters, Vol. 61, 2007, pp. 2961-2964. doi:10.1016 /j.matlet.2006.10.047

[22]   M. S. T. Goncalves, A. M. F. Oliveira-Campos, E. M. M. S. Pinto, P. M. S. Plasencia and M. J. R. P. Queiroz, “Photochemical Treatment of Solutions of Azo Dyes Containing TiO2,” Chemosphere, Vol. 39, 1999, pp. 781-786. doi:10.1016/S0045-6535(99)00013-2

[23]   W. Nam, J. Kim and G. Y. Han, “Photocatalytic Oxidation of Methul Orange in a Three-Phase Fluidized Bed Reactor,” Chemosphere, Vol. 47, 2002, pp. 1019-1024. doi:10.1016/S0045-6535(01)00327-7

[24]   E. Topoglidis, A. E. G. Cass, B. O’Regan and J. R. Durrant, “Immobilisation and Bioelectrochemistry of Proteins on Nanoporous TiO2 and ZnO Films,” Journal of Electroanalytical Chemistry, Vol. 517, 2001, pp. 20-27. doi:10.1016/S0022-0728(01)00673-8

[25]   A. Fujishima, T. N. Rao and D. A. Tryk, “Titanium Dioxide Photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 1, 2000, pp. 1-21. doi:10.1016/S1389-5567(00)00002-2

[26]   A. V. Emeline, W. Ryabchuk and N. Serpone, “Factors Affecting the Efficiency of a Photocatalysed Process in Aqueous Metal-Oxide Dispersions, Prospect of Distinguishing Between Two Kinetic Models,” Journal of Photobiology A: Chemistry, Vol. 133, 2000, pp. 89-97. doi:10.1016/S1010-6030(00)00225-2

 
 
Top