Dispersion Effect on Traveling Wave Solution of K-dV Equation

Show more

References

[1] M. Ablowitz and H. Segur, “Solitons and the Inverse Scattering Transform,” SIAM, Philadelpha, 1981.

http://dx.doi.org/10.1137/1.9781611970883

[2] L. Debnath, “Nonlinear Partial Differential Equations: For Scientists and Engineers,” 2nd Edition, Birkhouser, Boston, 2005. http://dx.doi.org/10.1007/b138648

[3] J. Dorea and A. Huerta, “Finite Element Method for Flow Problems,” John Wiley & Sons Ltd., New York, 2003.

[4] R. W. Lewis, R. W. Nithiarasu and P. Seethanamu, “Fundamentals of the Finite Element Method for Heat and Fluid Flow,” John Wiley & Sons, Inc., New York, 2004.

http://dx.doi.org/10.1002/0470014164

[5] A. Biswas and S. Konar, “Soliton Perturbation Theory for the Compound K-dV Equation,” International Journal of Theoretical Physics, Vol. 46, No. 2, 2007, pp. 237-243.

http://dx.doi.org/10.1007/s10773-006-9231-z

[6] F. G. Drazin and R. S. Johnson, “Solitons: An Introduction,” 2nd Edition, Cambridge University Press, New York, 1989.

http://dx.doi.org/10.1017/CBO9781139172059

[7] H. Segur “The Korteweg-de Vries Equations and Water Waves Solutions of the Equation, Part I,” Journal of Fluid Mechanics, Vol. 59, No. 4, 1973, pp. 721-736.

http://dx.doi.org/10.1017/S0022112073001813

[8] J. L. Hammack and H. Segur, “The Korteweg-de Vries Equation and Water Waves, II. Comparison with Experiments,” Journal of Fluid Mechanics, Vol. 65, No. 2, 1974, pp. 289-313.

http://dx.doi.org/10.1017/S002211207400139X

[9] J. L. Hammack and H. Segur, “The Korteweg-de Vries Equation and Water Waves, III. Oscillatory Waves,” Journal of Fluid Mechanics, Vol. 84, No. 2, 1978, pp. 337-358. http://dx.doi.org/10.1017/S0022112078000208

[10] T. Trogdon, S. Olver and B. Deconninck “Numerical Inverse Scattering for the Korteweg-de Vries and Modified Korteweg-de Vries Equations,” Physica D, Vol. 241, 2012, pp. 1003-1025.

[11] G. Whitham, “Linear and Nonlinear Waves,” Wiley-Interscience, New York, 1974.

[12] P. Le Blond and L. Mysak, “Waves in the Ocean,” Elsevier, Amsterdam, 1978.

[13] D. Korteweg and G. de-Vries, “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves,” Philosophical Magazine, Vol. 39, No. 240, 1895, pp. 422-443.

http://dx.doi.org/10.1080/14786449508620739

[14] J. Boussinesq, “Theorie de I’intumescence Liquid, Appleteonde Solitaire au de Translation, se Propageantdansun Canal Rectangulaire,” Les Comptes Rendus de l'Académie des Sciences, Vol. 72, 1871, pp. 755-759.

[15] J. Boussinesq, “Thorie des Ondes et Des Remous Qui se Propagent le Long d’un Canal Rectangulaire Horizontal, en Communiquant au Liquidecontenudansce Canal des Uitessessensiblementpareilles de la Surface au Fond”, Journal de Mathématiques Pures et Appliquées, Vol. 17, 1872, pp. 55-108.

[16] D. Peregrine “Long Waves on a Beach,” Journal of Fluid Mechanics, Vol. 27, 1967, pp. 815-827.

http://dx.doi.org/10.1017/S0022112067002605

[17] D. Burwell, E. Tolkova and A. Chawla, “Diffusion and Dispersion Characterization of a Numerical Tsunami Model,” Ocean Modelling, Vol. 19, No. 1-2, 2007, pp. 10-30.

http://dx.doi.org/10.1016/j.ocemod.2007.05.003

[18] G. Schroeder and K. Schlǘnzen, “Numerical Dispersion of Gravity Waves,” Monthly Weather Review, Vol. 137, No. 12, 2009, pp. 4344-4354.

http://dx.doi.org/10.1175/2009MWR2890.1