OPJ  Vol.3 No.8 A , December 2013
Nanostructured Metal Aggregate-Assisted Lasing in Rhodamine 6G Solutions
Abstract: We report on the experimental demonstration of considerable lowering of stimulated luminescence (lasing) threshold in R6G laser dye solution doped with metal agglomerates (Ag, Al, Ni) upon second harmonic of Nd:YAG-laser illumination. Due to strong structural coupling between individual nanoparticles, they may form fractal agglomerates providing an extreme optical pump-field enhancement near their complicated surface. For the first time, we have observed more than twofold increase in lasing efficiency of metal aggregated dye solution as compared to non-agglomerated monomeric metal nanocolloids. No random laser manifestation or surface plasmon-polariton resonances excitations were observed.
Cite this paper: V. Donchenko, Y. Geints, V. Kharenkov and A. Zemlyanov, "Nanostructured Metal Aggregate-Assisted Lasing in Rhodamine 6G Solutions," Optics and Photonics Journal, Vol. 3 No. 8, 2013, pp. 13-17. doi: 10.4236/opj.2013.38A002.

[1]   D. S. Wiersma, “The Physics and Applications of Random Lasers,” Nature Physics, Vol. 4, 2008, pp. 359-367.

[2]   M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga and V. M. Shalaev, “Enhancement of Spontaneous and Stimulated Emission of a Rhodamine 6G Dye by an Ag Aggregate,” Physical Review B, Vol. 74, No. 18, 2006, Article ID: 184203.

[3]   V. M. Markushev, V. F. Zolin and Ch. M. Briskina, “Powder Laser,” Zhurnal Prikladnoi Spektroskopii, Vol. 45, 1986, pp. 847-850.

[4]   W. L. Sha, C. H. Liu and R. R. Alfano, “Spectral and Temporal Measurements of Laser Action of Rhodamine 640 Dye in Strongly Scattering Media,” Optics Letters, Vol. 19, No. 23, 1994, pp. 1922-1924.

[5]   N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes and E. Sauvain, “Laser Action in Scattering Media,” Nature, Vol. 368, 1994, pp. 436-438.

[6]   R. M. Balachandran, D. P. Pacheco and N. M. Lawandy, “Laser Action in Polimeric Gain Media Containing Scattering Particles,” Applied Optics, Vol. 35, No. 4, 1996, pp. 640-643.

[7]   W. Kim, V. P. Safonov, V. M. Shalaev and R. L. Armstrong, “Fractals in Microcaviies: Giant Coupled Multiplicative Enhancement of Optical Responses,” Physical Review Letters, Vol. 82, No. 24, 1999, pp. 4811-4814.

[8]   H. Ramachandran, “Mirrorless Lasers,” Pramana, Vol. 58, No. 2, 2002, pp. 313-322.

[9]   H. Cao, “Lasing in Random Media,” Waves Random Media, Vol. 13, No. 3, 2003, R1-R39.

[10]   S. V. Karpov, A. L. Bas’ko, A. K. Popov, V. V. Slabko and T. George, “Optics of Nanostructured Fractal Silver Colloids,” In: S. G. Pandalai, Ed., Recent Research Developments in Optics, Kerala, 2002, pp. 427-463.

[11]   L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof and A. Polman, “Highly Confined Electromagnetic Fields in Arrays of Strongly Coupled Ag Nanoparticles,” Physical Review, Vol. 71, No. 23, 2005, Article ID: 235408.

[12]   V. A. Olejnikov, N. V. Pervov and B. V. Mchedlishvili, “Track Membranes in Template Synthesis of SERS-Active Nanostructures,” Critical Technologies. Membranes, Vol. 4, 2004, pp. 17-28.

[13]   H. C. van de Hulst, “Light Scattering by Small Particles,” John Wiley& Sons Ltd., New York, 1957.

[14]   M. Lerner and V. Shamansky, “Synthesis of Nanoparticles by High-Power Laser Pulses,” Journal of Structural Chemistry, Vol. 45, No. 1, 2004, pp. 111-114.

[15]   M. N. Pankratova and V. N. Izmailova, “Structure Formation of Casein Gels,” Colloid Journal, Vol. 38, 1976, pp. 490-495.

[16]   A. Zhdanov, M. P. Kreuzer, S. Rao, A. Fedyanin, P. Ghenuche, R. Quidant and D. Petrov, “Detection of Plasmon-Enhanced Luminescence Fields from an Optically Manipulated Pair of Partially Metal Covered Dielectric Spheres,” Optics Letters, Vol. 33, No. 23, 2008, pp. 2749-2751.