JMP  Vol.4 No.12 , December 2013
Atom-Field Entanglement inside a Cylindrical Nanotube
Author(s) S. Al-Awfi*
ABSTRACT

This work presents the entanglement between an electromagnetic field and two-level atom situated inside a quantum optical system. Our optical model is based on cylindrical tube with a hole diameter of the order of nanoscale which leads to only the lowest order mode can exist. Numbers of the statistical features of effective Hamiltonian such as the temporal evolution of the atomic inversion and the von Neumann entropy are evaluated. We have evaluated the atomic inversion and we demonstrate that the atom still in maximal entangled state when the radius of tube a is large. We have used the von Neumann entropy to measure the degree of that entanglement. The results illustrate that the effect of the radius of tube a changes the quasi-period of the field entropy and therefore the entanglement process.


Cite this paper
S. Al-Awfi, "Atom-Field Entanglement inside a Cylindrical Nanotube," Journal of Modern Physics, Vol. 4 No. 12, 2013, pp. 1597-1603. doi: 10.4236/jmp.2013.412197.
References
[1]   M. Nielsen and I. Chuang, “Quantum Computation and Information,” Cambridge University Press, Cambridge, 2000.

[2]   P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko and Y. Shih, Physical Review Letters, Vol. 75, 1995, pp. 4337-4342.
http://dx.doi.org/10.1103/PhysRevLett.75.4337

[3]   B. Kraus and J. I. Cirac, Physical Review Letters, Vol. 92, 2004, pp. 013602-013608.
http://dx.doi.org/10.1103/PhysRevLett.92.013602

[4]   S. Sorensen and K. Molmer, Physical Review Letters, Vol. 90, 2003, pp. 127903-127908.
http://dx.doi.org/10.1103/PhysRevLett.90.127903

[5]   C. Marr, A. Beige and G. Rempe, Physical Review A, Vol. 68, 2003, pp. 033817-033822.
http://dx.doi.org/10.1103/PhysRevA.68.033817

[6]   K. Molmer, Optics Communications, Vol. 179, 2000, pp. 429-435.

[7]   J. I. Cirac, P. Zoller, H. J. Kimble and H. Mabuchi, Physical Review Letters, Vol. 78, 1997, pp. 3221-3226.
http://dx.doi.org/10.1103/PhysRevLett.78.3221

[8]   S. A. Al-Awfi and E. M. Khalil, International Review of Physics, Vol. 3, 2008, pp. 147-153.

[9]   E. M. Khalil, Journal of Modern Physics, Vol. 2, 2011, pp. 724-729. http://dx.doi.org/10.4236/jmp.2011.27085

[10]   S. Marksteiner, C. M. Savage, P. Zoller and S. L. Rolston, Physical Review A, Vol. 50, 1994, pp. 2680-2690.
http://dx.doi.org/10.1103/PhysRevA.50.2680

[11]   M. A. Ol’Shanii, Y. B. Ovchinnkov and V. S. Letokhov, Optics Communication, Vol. 98, 1993, pp. 77-79.
http://dx.doi.org/10.1016/0030-4018(93)90761-S

[12]   M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman and D. Z. Anderson, Physical Review A, Vol. 53, 1996, pp. R648-R651.
http://dx.doi.org/10.1103/PhysRevA.53.R648

[13]   S. Al-Awfi and M. Babiker, Physical Review A, Vol. 61, 2000, Article ID: 033401.
http://dx.doi.org/10.1103/PhysRevA.61.033401

[14]   S. Al-Awfi and M. Babiker, Physical Review A, Vol. 58, 1998, pp. 4768-4778.
http://dx.doi.org/10.1103/PhysRevA.58.4768

[15]   J. P. Dowling and J. Gea-Banacloche, Advances in Atomic, Molecular, and Optical Physics, Vol. 37, 1996, pp. 1-94.
http://dx.doi.org/10.1016/S1049-250X(08)60098-1

[16]   H. Nha and W. Jhe, Physical Review A, Vol. 56, 1997, pp. 2213-2219. http://dx.doi.org/10.1103/PhysRevA.56.2213

[17]   S. Al-Awfi, Indian Journal of Physics, Vol. 8, 2013, pp. 819-825. http://dx.doi.org/10.1007/s12648-013-0289-1

[18]   M. M. A. Ahmed, E. M. Khalil and A.-S. F. Obada, Optics Communications, Vol. 254, 2005, pp. 76-84.
http://dx.doi.org/10.1016/j.optcom.2005.05.016

[19]   A.-S. F. Obada, M. M. A. Ahmed and E. M. Khalil, Journal of Modern Optics, Vol. 53, 2006, pp. 1149-1155.
http://dx.doi.org/10.1080/09500340600551440

[20]   E. Hinds, Advances in Atomic, Molecular, and Optical Physics, Vol. 2, 1993, pp. 1-56.

[21]   S. Al-Awfi, S. Bougouffa and M. Bawa’aneh, International Journal of Nanomanufacturing, Vol. 4, 2009, pp. 92-98. http://dx.doi.org/10.1504/IJNM.2009.028115

 
 
Top