[1] Timoshenko, S.P. and Goodier, J.N. (1970) Theory of elasticity. McGraw-Hill, New York.
[2] Ugural, S.C. and Fenster, S.K. (1987) Advanced strength and applied elasticity. Elsevier, New York.
[3] Gamer, U. (1984) Elastic-plastic deformation of the rotating solid disk. Ingenieur-Archiv, 54, 345-354. doi:10.1007/BF00532817
[4] Gamer, U. (1985) Stress distribution in the rotating elastic-plastic disk. ZAMM, 65, T136-137.
[5] Eraslan, A.N. (2000) Inelastic deformation of rotating variable thickness solid disks by Tresca and Von Mises criteria. International Journal of Computational Engineering Science, 3, 89-101. doi:10.1142/S1465876302000563
[6] Eraslan, A.N. and Orcan, Y. (2002) On the rotating elastic-plastic solid disks of variable thickness having concave profiles. International Journal of Mechanical Sciences, 44, 1445-1466. doi:10.1016/S0020-7403(02)00038-3
[7] Eraslan, A.N. (2005) Stress distributions in elastic-plastic rotating disks with elliptical thickness profiles using Tresca and von Mises criteria. ZAAM, 85, 252-266.
[8] Zenkour, A.M. and Allam, M.N.M. (2006) On the rotating fiber-reinforced viscoelastic composite solid and annular disks of variable thickness. International Journal for Computational Methods in Engineering Science, 7, 21-31. doi:10.1080/155022891009639
[9] Zienkiewicz, O.C. (1971) The finite element method in engineering science. McGraw-Hill, London.
[10] Banerjee, P.K. and Butterfield, R. (1981) Boundary element methods in engineering science. McGraw-Hill, New York.
[11] You, L.H., Tang, Y.Y., Zhang, J.J. and Zheng, C.Y. (2000) Numerical analysis of with elastic-plastic rotating disks arbitrary variable thickness and density. The International Journal of Solids and Structures, 37, 7809-7820. doi:10.1016/S0020-7683(99)00308-X
[12] Zenkour, A.M. and Mashat, D.S. (2010), Analytical and numerical solutions for a rotating disk of variable thickness. Applied Mathematics, 1, 430-437. doi:10.4236/am.2010.15057