Health  Vol.5 No.12 , December 2013
Low serum vitamin D among community-dwelling healthy women in Sri Lanka

Background: Although hypovitaminosis D is prevalent among healthy adults in Asia and other regions, available data among Sri Lankans are not consistent with this finding. We studied vitamin D level among healthy community-dwelling women and examined its effects on parathyroid hormone (PTH) level and bone mineral status. Methods: Females of 20-40 years (n = 434) who were employed in southern Sri Lanka were recruited to the study. Bone mineral density and content (pBMD and pBMC) of the middle phalanx of the middle finger of the non-dominant hand were measured in all subjects and 5.0 ml of venous blood was collected from each subject after an overnight fast for biochemical assessment of serum vitamin D, parathyroid hormone and total alkaline phosphatase. Results: Mean (SD) pBMD of the women studied was 0.493 (0.060) g/cm2 and pBMC was 1.49 (0.28) g. Severe vitamin D deficiency (<12.5 nmol/L) was seen in 21.4% of subjects, whereas 19.1% subjects had moderate (12.5-25.0 nmol/L) and 15.7% had mild (25.1 -35.0 nmol/L) vitamin D deficiency. Serum vitamin D showed significant positive correlations with pBMD (r = 0.13, p = 0.008) and pBMC (r = 0.12, p = 0.01). In regression analysis, vitamin D showed a positive association with pBMD (regression coefficient 0.0003, SEM 0.0001, p = 0.007). Conclusions: Vitamin D insufficiency/deficiency is prevalent among healthy young and middle-aged women in this study group selected from southern Sri Lanka. The accompanying rise of PTH indicates the biological significance of low vitamin D level. The negative effects observed on bone mineral status suggest the clinical importance of this finding.

Cite this paper: Rodrigo, M. , Hettiarachchi, M. , Liyanage, C. and Lekamwasam, S. (2013) Low serum vitamin D among community-dwelling healthy women in Sri Lanka. Health, 5, 1997-2003. doi: 10.4236/health.2013.512270.

[1]   Parfitt, A.M., Gallagher, J.C., Heaney, R.P., et al. (1982) Vitamin D and bone health in the elderly. The American Journal of Clinical Nutrition, 36, 1014-1031.

[2]   Deluca, H.F. (1988) The vitamin D story: A collaborative effort of basic science and clinical medicine. Proceedings of American Society Experimental Biology, 2, 224-236.

[3]   Devine, A., Wilson, S.G., Dick, I.M. and Prince, R.L. (2002) Effects of vitamin D metabolites on intestinal calcium absorption and bone turnover in elderly women American Journal of Clinical Nutrition, 75, 283-288.

[4]   Holick, M. (2002) Vitamin D: The underappreciated Dlightful hormone that is important for skeletal and cellular health. Current Opinion in Endocrinology, Diabetes and Obesity, 9, 87-98.

[5]   Lips, P. (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocrine Reviews, 22, 477-501.

[6]   Dawson-Hughes, B., Heaney, R.P., Holick, M.F., et al. (2005) Estimates of optimal vitamin D status. Osteoporosis International, 16, 713-716.

[7]   Puri, S., Marwaha, R.K., Agarwal, N., et al. (2008) Vitamin D status of apparently healthy schoolgirls from two different socioeconomic strata in Delhi: Relation to nutrition and lifestyle. British Journal of Nutrition, 99, 876-882.

[8]   Sachan, A., Gupta, R., Das, V., et al. (2005) High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. The American Journal of Clinical Nutrition, 81, 1060-1064.

[9]   Rashid, A., Mohammed, T., Stephens, W.P., et al. (1983) Vitamin D state of Asians living in Pakistan. British Medical Journal, 286, 182-184.

[10]   Islam, M.Z., Shamim, A.A., Kemi, V., et al. (2008) Vitamin D deficiency and low bone status in adult female garment factory workers in Bangladesh. British Journal of Nutrition, 99, 1322-1329.

[11]   Chailurkit, L.-O., Rajatanavin, R., Teerarungsikul, K., et al. (1996) Serum vitamin D, parathyroid hormone and biochemical markers of bone turnover in normal Thai subjects. Journal of the Medical Association of Thailand, 79, 499-504.

[12]   Meyer, H.E., Holvik, K., Lofthus, C.M. and Tennakoon, S.U.B. (2008) Vitamin D status in Sri Lankans living in Sri Lanka and Norway. British Journal of Nutrition, 99, 941-944.

[13]   Lekamwasam, S., Wijayaratne, L., Rodrigo, M. and Hewage, U. (2007) Prevalence of osteoporosis among postmenopausal women in Sri Lanka: A cross-sectional community study. APLAR Journal of Rheumatology, 10, 234-238.

[14]   Reginster, J.Y., Dethor, M., Pirenne, H., Dewe, W. and Albert, A. (2003) Reproducibility and diagnostic sensitivity of ultrasonometry of the phalanges to assess osteoporosis. International Journal of Gynecology & Obstetrics, 63, 21-28.

[15]   Sydney, L.B. and Lori, A.L. (2002) Bone densitometry for technologists. Humana Press Inc., Totowa.

[16]   Harinarayan, C.V., Ramalakshmi, T., Prasad, U.V. and Sudhakar, D. (2008) Vitamin D status in and hrapradesh: A population based study. Indian Journal of Medical Research, 127, 211-218.

[17]   Ripley, B.D. (2001) Using databases with R. R News, 1, 18-20.

[18]   Goswami, R., Gupta, N., Goswami, D., Marwaha, R.K., Tandon, N. and Kochupillai, N. (2000) Prevalence and significance of low 25-hydroxyvitamin D concentrations in healthy subjects in Delhi. The American Journal of Clinical Nutrition, 72, 472-475.

[19]   Tandon, N., Marwaha, R.K., Kalra, S., et al. (2003) Bone mineral parameters in healthy young Indian adults with optimal vitamin D availability. Internal Medical Journal of India, 16, 298-302.

[20]   Arya, V., Bhambri, R., Godbole, M.M. and Mithal, A. (2004) Vitamin D status and its relationship with bone mineral density in healthy Asian Indians. Osteoporosis International, 15, 56-61.

[21]   DeLuca, H.F. (2004) Overview of general physiologic features and functions of vitamin D. The American Journal of Clinical Nutrition, 80(S), 1689S-1696S.

[22]   Holick, M.F. (2006) High prevalence of vitamin D inadequacy and implications for health. Mayo Clinic Proceedings, 81, 353-373.

[23]   Chapuy, M.C., Preziosi, P., Maamer, M., et al. (1997) Prevalence of vitamin D insufficiency in an adult normal population. Osteoporosis International, 7, 439-443.

[24]   Need, A.G., Horowitz, M., Morris, H.A. and Nordin, B.C. (2000) Vitamin D status: Effects on parathyroid hormone and 1,25-dihydroxyvitamin D in postmenopausal women. The American Journal of Clinical Nutrition, 71, 1577-1581.

[25]   Leboff, M.S., Kohlmeier, L., Hurwitz, S., et al. (1999) Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. Journal of the American Medical Association, 281, 1505-1511.

[26]   Harris, S.S., Soteriades, E., Coolidge, J.A., et al. (2000) Vitamin D insufficiency and hyperparathyroidism in a low income, multiracial, elderly population. The Journal of Clinical Endocrinology & Metabolism, 85, 4125-4130.

[27]   Lips, P., Duong, T., Oleksik, A., Black, D., et al. (2001) A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: Baseline data from the multiple outcomes of reloxifene evaluation clinical trial. The Journal of Clinical Endocrinology & Metabolism, 86, 1212-1221.

[28]   Bischoff-Ferrari, H.A., Giovannucci, E., Willett, W.C., et al. (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. The American Journal of Clinical Nutrition, 84, 18-28.

[29]   Heaney, R.P., Dowell, M.S., Hale, C.A. and Bendich, A. (2003) Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. The Journal of the American College of Nutrition, 22, 142-146.

[30]   Jackson, R.D., LaCroix, A.Z., Gass, M., et al. (2006) Calcium plus vitamin D supplementation and the risk of fractures. The New England Journal of Medicine, 354, 669-683.

[31]   Picard, D., Brown, J., Rosenthall, L., et al. (2004) Ability of peripheral DXA measurement to diagnose osteoporosis as assessed by central DXA measurement. Journal of Clinical Densitometry, 7, 111-118.