OJAppS  Vol.3 No.8 , December 2013
Trace Elemental Analysis in Epileptic Children
Abstract: We have measured trace elements in epileptic patients. Levels of trace elements are very fluctuating in comparison to the healthy controls. The levels of Zn, Fe and Cu are higher in comparison to healthy normal children about 64%, 55% and 33% respectively. The levels of Cu are just fifty percent to levels of Zn. The levels of Ca, K and Mg are higher about 10%, 9.027% and 4.2% in comparison to normal children. Sodium levels were very low in comparison to all the trace elements and are higher about 3.2% than controls. The multiple correlation coefficients between Na, K and Ca, i.e. (RNa.KCa) has a value 0.4993 in comparison to healthy children. Multiple correlation coefficients between Fe, Cu and Zn, i.e. (RFe.CuZn) has a value 0.4366. The multiple correlation coefficients RNa.Kca and RFe.CuZn are found lower. These elements were strongly correlated with other. The multiple correlation coefficients such as RK.NaCa, RCa.K.Na, RMg.NaK, RNa.MgK, RK.MgNa, RCu.FeZn and RZn.FeCu were also evaluated and found on higher side from normal range. Trace elements may act as a catalytic agent for enzyme system of the cells. The minimum requirements of living objects for essential trace elements may be expressed in proportions or concentrations of the total dry food taken everyday. A tolerance of the human system may be fluctuated according to intake of these elements.
Cite this paper: S. Kumar, V. Kumar, R. Mittal and D. Jain, "Trace Elemental Analysis in Epileptic Children," Open Journal of Applied Sciences, Vol. 3 No. 8, 2013, pp. 449-476. doi: 10.4236/ojapps.2013.38056.

[1], “The Importance of Trace Minerals,” NFM’s Nutrition Science News, 1985, pp. 1-4.

[2]   M. Romeyn, “Vitamins, Minerals and Trace Elements,” Nutrition and HIV, Jossey-Bass Inc., San Francisco, 1998.

[3]   W. B. Herring, B. S. Leavell, L. M. Paixao and J. H. Yoe, “Trace Metals in Human Plasma and Red Blood Cells,” American Journal of Clinical nutrition, Vol. 8, No. 6, 1960, pp. 846-854.

[4]   S. J. Khurshid and I. H. Qureshi, “The Role of Inorganic Elements in Human Body,” The Nucleus, Vol. 21, No. 4, 1984, pp. 3-23.

[5]   R. Suhaila, K. Nasir, A. Shujaat, U. Nasim and Z. I. Mohammad, “Essential Trace Metals in Human Whole Blood in Relation to Environment,” Pakistan Journal of Medical Research, Vol. 43, No. 2, 2004, pp. 1-5.

[6]   S. Kumar, “Medico-Physical Studies on Epilepsy and Other Neurological Disorders,” Ph.D. Thesis, University of Delhi, India, 1989.

[7]   R. L. A. Mary, A. C. Kelvin, D. Sheila and H. R. William, “Nutrient Risk Assessment Implication for Food Fortification Policy,” In: A. M. Rousel, R. A. Anderson and A. Favrier, Eds., Trace Elements in Man and Animals-10, Kluwer Academic Publications, New York, Dodrecht, 2000, pp. 215-220.

[8]   G. S. Alexander, “Minerals and Human Health: The Rationale for Optimal and Balanced Trace Element Levels,” Life Sciences Press, Tacoma, 1995, pp. 1-5.

[9]   R. L. Pike and M. L. Brown, “An Integrated Approach,” Nutrition, John Wiley & Sons, 1984, p. 197.

[10]   H. Zumkley, “Trace Elements in Medicine,” Fresenius’ Zeitschrift Für Analytische Chemie, Vol. 327, No. 1, 1987, p. 6.

[11]   I. J. J. Davies, “Clinical Significance of the Essential Biological Metals,” In: Animal Health and Hygiene (General), William Heineman, London, 1972, pp. 48-126.

[12]   R. R. Burns and G. S. Fell, “Estimation and Interpretation of Plasma Zinc Fractions,” Scottish Medical Journal, Vol. 21, No. 3, 1976, pp. 153-154.

[13]   A. S. Prasad and D. Oberleas, “Binding of Zinc to Amino Acids and Serum Proteins in Vitro,” Journal of Laboratory and Clinical Medicine, Vol. 76, No. 3, 1970, pp. 416-425.

[14]   D. Kelin and J. Mann, “Carbonic Anhydrase: Purification and Nature of the Enzyme,” Biochemical Journal, Vol. 34, No. 8-9, 1940, pp. 1163-1176.

[15]   J. F. Riordan and B. L. Vallee, “Structure and Function of Zinc Metalloenzymes,” In: A. S. Prasad, Ed., Trace Elements in Human Health and Disease, Vol. 1, Academic Press, New York, 1976, pp. 227-251.

[16]   M. Chavapil, C. F. Zukowski, B. G. Hattler, L. Stankova, D. Montgomery, E. C. Carlson and J. C. Ludwig, “Zinc and Activity of Cell Membrane,” In: A. S. Prasad, Ed., Trace-Elements in Human Health and Disease, Vol. 1, Academic Press, New York, 1976, pp. 269-281.

[17]   A. S. Prasad, A. R. Schulert, H. H. Sandstead, A. Miale Jr. and Z. Farid, “Zinc, Iron and Nitrogen Content of Sweat in Normal and Deficient Subjects,” Journal of Laboratory and Clinical Medicine, Vol. 62, 1963, pp. 84-89.

[18]   P. A. Walravens, W. J. V. Doornick and K. M. Hambidge, “Metals and Mental Function,” Journal of Pediatrics, Vol. 93, No. 3, 1978, p. 535.

[19]   R. I. Henkin, B. M. Patten, P. K. Re and D. A. Bronzett, “A Syndrome of Acute Zinc Loss,” JAMA, Vol. 32, No. 11, 1975, pp. 745-751.

[20]   I. E. Dresti, “Zinc in the Central Nervous System: The Emerging Interactions,” In: C. J. Frederickson, G. A. Howell and E. J. Kasarskis, Eds., The Neurobiology of Zinc Part A, R. L. Alan, New York, 1984, pp. 1-26.

[21]   V. F. Fairbanks, J. L. Fahey and E. Beutler, “Clinical Disorders of Iron Metabolism,” 2nd Edition, Grune and Stratton, New York, 1971, pp. 1-486.

[22]   Mc Cance and E. M. Widdowson, “Absorption and Excretion of Iron,” Lancet, Vol. 2, 1973, pp. 680-684.

[23]   S. Gramick, “Ferritin IX. Increase of the Protein Apoferritin in the Gastrointestinal Mucosa as a Direct Response to Iron Feeding. The Function of Ferritin in the Regulation of Iron Absorption,” Journal of Biological Chemistry, Vol. 164, 1946, pp. 737-746.

[24]   C. V. Moore, C. A. Doan and W. R. Arrowsmith, “Studies in Iron Transportation and Metabolism, Mechanism of Iron Transportations: Its Significance in Iron Utilization in Anemic States of Varied Etiology,” Journal of Clinical Investigation, Vol. 16, No. 4, 1973, pp. 627-648.

[25]   H. R. Mahler and D. G. Elowe, “DPNH Cytochrome Reductase, a Ferroflavo Protein,” Journal of the American Chemical Society, Vol. 75, No. 22, 1953, pp. 5769-5770.

[26]   D. A. Richert and W. W. Westerfeld, “The Relationship of Iron to Xanthime Oxidase,” Journal of Biological Chemistry, Vol. 209, 1954, pp. 179-189.

[27]   H. Fisher and K. Zeile, “Synthesis of Hematoprophyrin, Protoporphyrin and Hemin,” European Journal of Organic Chemistry, Vol. 468, No. 1, 1929, pp. 98-116.

[28]   D. J. E. Ingram, J. W. Fibson and M. F. Perutz, “Orientation of the Four Heme Groups in Hemoglobin,” Nature, Vol. 178, 1956, pp. 906-908.

[29]   G. C. Holmberg and C. B. Laurell, “Investigations in Serum Copper I. Nature of Serum Copper and Its Relation to the Iron-Binding Protein in Human Serum,” Acta Chemica Scandinavica, Vol. 1, No. 10, 1974, pp. 944-950.

[30]   A. L. Schade, R. W. Reinhart and H. Levy, “Carbon Dioxide and Oxygen in Complex Formation with Iron and Siderophilin, the Iron-Binding Compound of Human Plasma,” Archives of Biochemistry and Biophysics, Vol. 20, No. 1, 1949, pp. 170-172.

[31]   D. A. Lipschitz, J. D. Cook and C. A. Finch, “A Clinical Evaluation of Serum Ferritin as an Index of Iron Stores,” New England Journal of Medicine, Vol. 290, No. 22, 1974, pp. 1213-1216.

[32]   M. A. Simes, J. E. Addiego Jr. and P. R. Dallman, “Ferritin in Serum: Diagnosis of Iron Deficiendcy and Iron Overload in Infants and Children,” Blood, Vol. 43, No. 4, 1974, pp. 581-590.

[33]   J. K. Aikawa, “The Relationship of Magnesium to Diseases in Domestic Animals and in Human,” C. Charles, Thomas, Springfield, Illinois, 1971, pp. 1-145.

[34]   J. K. Aikawa, “Biochemistry and Physiology of Magnesium,” In: A. S. Prasad, Ed., Trace Elements in Humans: Health and Diseases, Vol. II, Academic Press, New York, 1976, pp. 47-78.

[35]   E. M. Widdowson, R. A. McCance and C. N. Spray, “The Clinical Composition of the Human Body,” Clinical Science, Vol. 10, 1951, pp. 113-125.

[36]   J. C. Waterlow, “Endocrine Changes in Severe PEM,” In: J. C. Waterlow, Ed., Protein-Energy Malnutrition, Edward Arnold, London, 1992, pp. 112-125.

[37]   H. G. Classen, “Magnesium and Potassium Deprivation and Supplementation in Animals and Man: Aspects in View of Intestinal Absorption,” Magnesium, Vol. 3, No. 4-6, 1984, pp. 257-264.

[38]   S. M. Al-Ghamdi, E. C. Cameron and R. A. Sutten, “Magnesium deficiency: Pathophysiologic and Clinical Overview,” American Journal of Kidney Disease, Vol. 24, No. 5, 1994, pp. 737-752.

[39]   P. Wester, “Magnesium,” The American Journal of Clinical Nutrition, Vol. 45, 1987, pp. 1305-1312.

[40]   B. Krasner, “Cardiac Effects of Magnesium with Special Reference to Anaesthesia: A Review,” Canadian Anaesthetists’ Society Journal, Vol. 26, No. 3, 1979, pp. 181-185.

[41]   Y. Furukawa and S. Chiba, “Effects of Magnesium on the Isolated, Blood-Perfused Atrial and Ventricular Preparations of the Dog Heart,” Japanese Heart Journal, Vol. 22, No. 2, 1981, pp. 239-246.

[42]   G. Stark, U. Stark, E. Pilger, K. Honigl, H. Bertuch and H. A. Tritthart, “The Influence of Elevated Mg2+ Concentrations on Cardiac Electrophysiological Parameters,” Cardiovascular Drugs and Therapy, Vol. 3 No. 2, 1989, pp. 183-189.

[43]   M. C. PHaigney, R. Berger, S. Schulman, G. Gerstenblith, C. Tunin. B. Silver, H. S. Silverman, G. Tomaselli and H. Calkins, “Tissue Magnesium Levels and the Arrhythmic Substrate in Humans,” Journal of Cardiovascular Electrophysiology, Vol. 8, No. 9, 1997, pp. 980-986.

[44]   P. Ireland and J. S. Fordtran, “Effect of Dietary Calcium and Age on Jejunal Calcium Absorption in Humans Studied by Intestinal Perfusion,” Journal of Clinical Investigation, Vol. 52, No. 11, 1973, pp. 2672-2681.

[45]   R. P. Heaney, P. D. Saville and R. R. Recker, “Calcium Absorption as a Function of Calcium Intake,” Journal of Laboratory and Clinical Medicine, Vol. 85, No. 6, 1975, pp. 881-890.

[46]   R. Wilkinson, “Absorption of Calcium, Phosphorus and Magnesium Calcium Phosphate and Magnesium Metabolism,” In: B. E. C. Nordin, Ed., Churchill Livingstone, Edinberg, 1976, pp. 36-112.

[47]   D. H. Marshall, “Calcium and Phosphate Kinetics Calcium, Phosphate and Magnesium Metabolism,” In: B. E. C. Nordin, Ed., Churchill Livingstone, Edinberg, 1976, pp. 257-297.

[48]   H. A. Morris, A. G. Need, M. Horowitz, P. D. O’Loughlin and B. E. Nordin, “Calcium Absorption in Normal and Osteoporotic Postmenopausal Women,” Calcified Tissue International, Vol. 49, No. 4, 1991, pp. 240-243.

[49]   P. R. Ebeling, A. L. Yergey and N. E. Vleira, “Influence of Age on Effects of Endogeneous 1, 25-Dihydroxyvitamin D on Calcium Absorption in Normal Women,” Calcified Tissue International, Vol. 55, No. 5, 1994, pp. 330-334.

[50]   A. G. Need, H. A. Morris, M. Horowitz, E. Scopacasa and B. E. Nordin, “Intestinal Calcium Absorption in Men with Spinal Osteoporosis,” Clinical Endocrinology, Vol. 48, No. 2, 1998, pp. 163-168.

[51]   B. E. C. Nordin, “Nutritional Considerations,” In: B. E. C. Nordin, Ed., Calcium, Phosphate and Magnesium Metabolism, Churchill Livingstone, Edinberg, 1976, pp. 1-35.

[52]   G. N. Kent, R. I. Price and D. H. Gutteridge, J. R. Allen, M. P. Barnes, G. J. Hickling, R. W. Retallack, S. G. Wilson, R. D. Delvin, R. I. Price, M. Simith, C. I. Bhagat, C. Davies and A. St. Johns, “Human Lactation: Forearm Trabecular Bone Loss, Increased Bone Turnover, and Renal Conservation of Calcium and Inorganic Phosphate with Recovery of Bone Mass Following Weaning,” Journal of Bone and Mineral Research, Vol. 5, No. 4, 1990, pp. 361-369.

[53]   J. M. Lopez, G. Gonzalez, V. Reyes, C. Campino and S. Diaz, “Bone Turnover and Density in Healthy Women during Breastfeeding and after Weaning,” Osteoporosis International, Vol. 6, No. 2, 1996, pp. 153-159.

[54]   G. M. Chan, M. McMurray, K. Westover, K. Engelbert-Fenton and M. R. Thomas, “Effects of Increased Dietary Calcium Intake upon the Calcium and Bone Mineral Status of Lacting Adolescent and Adult Women,” American Journal of Clinical Nutrition, Vol. 46, No. 2, 1987, pp. 319-323.

[55]   M. Katz and E. R. Steihm, “Host Defense in Malnutrition,” Pediatrics, Vol. 59, No. 4, 1977, pp. 490-495.

[56]   R. M. Suskind, “Malnutritian and the Immune Response,” Kroc Foundation Series (USA), Vol. 7, Raven Press, New York, 1977, p. 468.

[57]   I. B. Bongiorni-Malave and M. Pocino, “Abnormal Regulatory Control of the Antibody Response to Hetrologous Erythrocytes in Protein-Calorie-Malnourished Mice,” Clinical Immunology and Immunopathology, Vol. 16 No. 1, 1980, pp. 19-29.

[58]   I. Malave, A. Nemeth and M. Pocino, “Changes in Lymphocyte Populations in Proteins—Calorie-Deficient Mice,” Cellular Immunology, Vol. 49, No. 2, 1980, pp. 235-249.

[59]   M. E. Gershwin, C. L. Keen, M. P. Fletcher and L. S. Hurley, “Trace Element Deficiencies and Immune Responsiveness,” In: L. S. Hurley, C. L. Keen, Bo. Lonnerdal and R. B. Rucker, Eds., Trace Elements in Man and Animals, Plenuum Press, New York and London, 1988, pp. 85-89.

[60]   D. A. Rigas, E. C. Rigas and C. Head, “Biophasic Toxicity of Diethyldithiocarbamate, a Metal Chelator, to T Leymphocytes and Polymorphonucuclear Granulocytes: Reversal by Zinc and Copper,” Biochemical and Biophysical Research Communications, Vol. 88, No. 2, 1979, pp. 373-379.

[61]   P. Bratter, A. Raab and A. N. Richarz, “Trace Elements Speciation in Human Body Fluids,” In: A. E. Favier, A. N. Roussel and R. A. Anderson, Eds., Trace Elements in Man and Animals, International Symposium 10th, Trace Elements in Man and Animals, Kluwer Academic/Plenum Publishers, New York, 2000, pp. 145-152.

[62]   M. Adnan, G. Ahmed, O. Khaled, A. M. Indress, A. Ahmed, T. Hiatham and H. Wall, “Simultaneous Determination of Cd, Pb, Cu, Zn and Se in Human Blood of Jordanian Smokers, by ICP-OES,” Biological Trace Element Research, Vol. 133, No. 1, 2010, pp. 1-11.

[63]   E. Keck, B. Gollnick, D. Reinhardt, D. Karch, H. Peerenboom and H. L. Kruskemper, “Calcium Metabolism and Vitamin D Metabolite Levels in Children Receiving AntiConvulsant Drugs,” European Journal of Pediatrics, Vol. 139, No. 1, 1982, pp. 52-55.

[64]   H. John, J. D. Maxwell, D. A. Stewart, V. Parsons and R. Williams, “Altered Calcium Metabolism in Epileptic Children on Anti-Convulsants,” British Medical Journal, Vol. 4, No. 5781, 1971, pp. 202-204.

[65]   B. H. William, B. S. Leavell, L. M. Paixao and H. Y. John, “A Study of Magnesium, Chromium, Nickel, Copper and Zinc I. Observation of Normal Subjects,” American Journal of Clinical Nutrition, Vol. 8, 1960, pp. 846-854.

[66]   T. L. Guidotti, J. McNamara and M. S. Moses, “The Interpretation of Trace Element Analysis in Body Fluids,” The Indian Journal of Medical Research, Vol. 128, No. 4, 2008, pp. 524-532.

[67]   R. S. Khanna, R. Kumar, R. A. Asthana, R. Negi, D. Pande, A. Kumar and H. D. Khanna, “Role of Trace Element and Antioxidants in Free Radical Mediated Injury in Neonates,” MASAUM Journal of Basic and Applied Sciences, Vol. 3, No. 1, 2009, pp. 543-547.

[68]   W. J. Walsh, H. R. Isaacson, F. Rehman and A. Hall, “Elevated Blood Copper/Zinc Ratio in Assaultive Young Males,” Physiology & Behavior, Vol. 62, No. 2, 1997, pp. 327-329.

[69]   J. F. Pamela, J. Paula and C. John, “Zinc Deficiency and Immune Function,” JAMA, Vol. 123, No. 12, 1987, pp. 1699-1701.

[70]   I. I. Atilla, O. Elit, G. Mukaddes, I. I. K. Bunyamin, I. I. Nevin, Y. I. Neciip and A. Omer, “The Comparison of Nail and Serum Trace Elements in Patients with Epilepsy and Healthy Subjects,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, Vol. 28, No. 1, 2004, pp. 99-104.

[71]   J. C. Smith Jr., G. P. Butrimovitz, W. C. Purdy, R. L. Boeckx, R. Chu, M. E. McIntosh, K. D. Lee, J. K. Kynn, E. C. Dinovo, A. S. Prasad and H. Spencer, “Direct Measurement of Zinc in Plasma by Atomic Absorption Spectroscopy,” Journal of Clinical Chemistry, Vol. 25, No. 8, 1979, pp. 1487-1491.

[72]   R. Prasad, A. Singh, B. K. Das, R. S. Upadhyay, T. B. Singh and O. P. Mishra, “Cerebrospinal Fluid and Serum Zinc Copper, Magnesium and Calcium Levels in Children with Idiopathic Seizure,” Journal of Clinical and Diagnostic Research, Vol. 3, No. 6, 2009, pp. 1841-1846.

[73]   U. Tinggi and W. Maher, “Determination of Trace Element in Biological Tissues by Aluminium Block Digestion and Spike Height Flame Atomic Absorption Spectrometry,” Microchemical Journal, Vol. 33, No. 3, 1986, pp. 304-308.

[74]   J. B. Willis, “Determination of Magnesium in Blood Serum by Atomic Absorption Spectroscopy,” Nature, Vol. 184, 1959, pp. 186-187.

[75]   T. Deniz, H. T. Ali and R. Saraymen, “The Effects of Antiepileptic Drugs on Serum and Hair Trace Element Levels,” Ankara Universitesi Tip Fakultesi Mecmuasi, Vol. 61, No. 2, 2008, pp. 73-76.

[76]   M. Soylak, S. Saracoglu, U. Divrikli and L. Elci, “Copper and Zinc Concentrations of Serum Samples of Healthy People Living in Tokat, Turkey,” Trace Elements and Electrolytes, Vol. 18, No. 1, 2001, pp. 47-50.

[77]   T. Lech, “Calcium and Magnesium Content in Hair as a Predictor of Disease in Children,” Trace Elements and Electrolytes, Vol. 18, No. 3, 2001, pp. 112-121.

[78]   H. Avci, N. Kizilkan and M. Yaman, “Comparison of Trace Elements Concentrations in Scalp Hair of Epileptic and Normal Subjects,” Trace Elements and Electrolytes, Vol. 25, No. 3, 2008, pp. 147-155.

[79]   H. T. Delves, B. E. Clayton and J. Bicknel, “Concentration of Trace Metals in the Blood of Children,” British Journal of Preventive & Social Medicine, Vol. 27, No. 2, 1973, pp. 100-107.

[80]   W. G. Smith and I. Bone, “Copper, Zinc and Magnesium Plasma Levels in Epilepsy,” Journal of Neurology, Neurosurg & Psychiatry, Vol. 45, No. 11, 1982, p. 1072.

[81]   S. Kumar, M. Bajaj, D. C. Jain and H. S. Yadav, “A Search for the Trace Elemental Deficiencies in Grand Mal Epilepsy Using Atomic Absorption Spectrophotometric Technique and Catalytic Agent in the Cellular Enzyme Reaction,” Proceedings of the World Congress on Clinical Nutrition, Vol. 1, 1988, pp. 115A-121A.

[82]   M. Kaji, N. Ito, T. Okuno, T. Momoi, H. Sasaki, C. Yamanaka, T. Yorifuji and H. Mikawa, “Serum Copper and Zinc Levels in Epileptic Children with Valprate Treatment,” Epilepsia, Vol. 33, No. 3, 1992, pp. 555-557.

[83]   P. J. Barlow, P. E. Francois, I. J. Goldberg, I. Richardson, M. G. Izmeth, K. Kumpeson and P. Sykes, “Trace Metal Abnormalities in Long Stay Hyperactive Mentally Handicapped Children and Agitates Senile Dements,” Journal of the Royal Society Medicine, Vol. 79, No. 10, 1986, pp. 581-583.

[84]   A. Walsh, “The Application of Atomic Absorption Spectra to Chemical Analysis,” Spectrochimica Acta, Vol. 7, 1956, pp.108-117.

[85]   D. A. koog, F. J. Holler and T. A. Nieman, “A Prinicples of Instrumental Analysis,” 5th Edition, Harcourt Brace & Company, Philadelphia, 1998.

[86]   A. Verrotti, F. Basciani, D. Trotta, M. P. Pomilio, G. Morgese and F. Chiarelli, “Serum Copper Zinc Selenium Glutathione Peroxidase and Superoxide Dismutase Levels in Epileptic Children before and after 1 Year of Sodium Valproate and Carbamazepine Therapy,” Epilepsy Research, Vol. 48, No. 1, 2002, pp. 71-75.

[87]   F. Armutcu, E. Ozerol, A. Gruel, M. Kanter, H. Vural, C. Yakinci and O. Akyol, “Effect of Long-Term Therapy with Sodium Valproate on Nail and Serum Trace Element Status in Epileptic Children,” Biological Trace Element Research, Vol. 102, No. 1-3, 2004, pp. pp. 1-10.

[88]   A. Ilhan, E. Uz, S. Kali, A. Var and O. Akyol, “Serum and Hair Trace Element Levels in Patients with Epilepsy and Healthy Subjects: Does the Antiepileptic Therapy Affect the Element Concentrations of Hair,” European Journal of Neurology, Vol. 6, No. 6, 1999, pp. 705-709.

[89]   S. Altunbasak, F. Biatmakoui, V. Baytok, O. Herguner, H. R. Burgut and L. Kayrin, “Serum and Hair Zinc Levels in Epileptic Children Taking Valprioic Acid,” Biological Trace Element Research, Vol. 58, No. 1-2, 1997, pp. 117-125.