[1] J. Wang, J. Shi and J. E. Wei, “Predator-Prey System with Strong Allee Effect in Prey,” Journal of Mathematical Biology, Vol. 62, No. 3, 2011, pp. 291-331.
http://dx.doi.org/10.1007/s00285-010-0332-1
[2] S. M. Baer, B. Li and H. L. Smith, “Multiple Limit Cycles in the Standard Model of Three Species Competition for Three Essential Resources,” Journal of Mathematical Biology, Vol. 52, No. 6, 2006, pp. 745-760.
http://dx.doi.org/10.1007/s00285-005-0367-x
[3] X. Li, H. Wang and Y. Kuang, “Global Analysis of a Stoichiometric Producer-Grazer Model with Holling Type Functional Responses,” Journal of Mathematical Biology, Vol. 63, No. 5, 2011, pp. 901-932.
http://dx.doi.org/10.1007/s00285-010-0392-2
[4] H. Freedman and P. Waltman, “Mathematical Analysis of Some Three-Species Food-Chain Models,” Mathematical Biosciences, Vol. 33, No. 3-4, 1977, pp. 257-276.
http://dx.doi.org/10.1016/0025-5564(77)90142-0
[5] H. I. Freedman and J. W. H. So, “Global Stability and Persistence of Simple Food Chains,” Mathematical Biosciences, Vol. 76, No. 1, 1985, pp. 69-86.
http://dx.doi.org/10.1016/0025-5564(85)90047-1
[6] T. C. Gard, “Persistence in Food Chains with General Interactions,” Mathematical Biosciences, Vol. 51, No. 1-2, 1980, pp. 165-174.
http://dx.doi.org/10.1016/0025-5564(80)90096-6
[7] J. P. Francoise and J. Llibre, “Analytical Study of a Higher-Order Hopf Bifurcation in a Tritrophic Food Chain Model,” Applied Mathematics and Computation, Vol. 217, No. 17, 2011, pp. 7146-7154.
http://dx.doi.org/10.1016/j.amc.2011.01.109
[8] A. Buica and J. Llibre, “Averaging Methods for Finding Periodic Orbits via Brouwer Degree,” Bulletin des Sciences Mathématiques, Vol. 128, No. , 2004, pp. 7-22.
http://dx.doi.org/10.1016/j.bulsci.2003.09.002
[9] J. Sanders, F. Verhulst and J. Murdock, “Averaging Method in Nonlinear Dynamical Systems,” 2nd Edition, Applied Mathematical Sciences, Vol. 59, Springer, New York, 2007.
[10] F. Verhulst, “Nonlinear Differential Equations and Dynamical Systems,” 2nd Edition, Universitext, Springer-Verlag, Berlin, 1996.
[11] K. Cheng, “Uniqueness of a Limit Cycle of a Predator-Prey System,” SIAM Journal on Mathematical Analysis, Vol. 12, No. 4, 1981, pp. 541-548.
http://dx.doi.org/10.1137/0512047
[12] B. Deng, “Food Chain Chaos with Canard Explosion,” Chaos, Vol. 14, No. 4, 2004, pp. 1083-1092.
http://dx.doi.org/10.1063/1.1814191
[13] B. Deng and G. Hines, “Food Chain Chaos Due to Shilnikov’s Orbit,” Chaos, Vol. 12, No. 3, 2002, pp. 533-538.
[14] Yu. A. Kuznetsov, O. De Feo and D. Rinaldi, “Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model,” SIAM Journal on Mathematical Analysis, Vol. 62, 2001, pp. 462-487.
http://dx.doi.org/10.1137/S0036139900378542
[15] R. May, “Limit Cycles in Predator-Prey Communities,” Science, Vol. 177, No. 4052, 1972, pp. 900-902.
http://dx.doi.org/10.1126/science.177.4052.900
[16] S. Muratori and S. Rinaldi, “A Dynamical System with Hopf Bifurcations and Catastrophes,” Applied Mathematics and Computation, Vol. 29, 1989, pp. 1-15.
http://dx.doi.org/10.1016/0096-3003(89)90036-2
[17] C. S. Holling, “Some Characteristics of Simple Types of Predation and Parasitism,” Entomological Society of Canada, Vol. 91, 1959, pp. 385-398.
http://dx.doi.org/10.4039/Ent91385-7
[18] J. Guckenheimer, “On a Codimension Two Bifurcation, Dynamical Systems and Turbulence, Warwick 1980 (Coventry, 1979/1980),” Lecture Notes in Mathematics, Vol. 898, No. 654886, Springer, Berlin, 1981, pp. 99-142.
[19] J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,” Applied Mathematical Sciences, Vol. 42, Springer Verlag, 2002.
[20] M. Han, “Existence of Periodic Orbits and Invariant Tori in Codimension Two Bifurcations of Three-Dimensional Systems,” Journal of Systems Science and Mathematical Sciences, Vol. 18, No. 4, 1998, pp. 403-409.
[21] Yu. A. Kuznetsov, “Elements of Applied Bifurcation Theory,” 3rd Edition, Applied Mathematical Sciences, Vol. 12, Springer-Verlag, New York, 2004.
[22] J. Scheurle and J. Marsden, “Bifurcation to Quasi-Periodic Tori in the Interaction of Steady State and Hopf Bifurcations,” SIAM Journal on Mathematical Analysis, Vol. 15, No. 6, 1984, pp. 1055-1074.
http://dx.doi.org/10.1137/0515082
[23] I. Baldomá and T. M. Seara, “Brakdown of Heteroclinic Orbits for Some Analytic Unfoldings of the Hopf-Zero Singulairty,” Journal of Nonlinear Science, Vol. 16, No. 6, 2006, pp. 543-582.
http://dx.doi.org/10.1007/s00332-005-0736-z
[24] I. Baldomá and T. M. Seara, “The Inner Equation for Genereic Analytic Unfoldings of the Hopf-Zero Singularity,” Discrete and Continuous Dynamical Systems: Series B, Vol. 10, No. 2-3, 2008, pp. 232-347.
[25] H. W. Broer and G. Vegter, “Subordinate Silnikov Bifurcations Near Some Singularities of Vector Fields Having Low Codimension,” Ergodic Theory and Dynamical Systems, Vol. 4, No. 4, 1984, pp. 509-525.
http://dx.doi.org/10.1017/S0143385700002613
[26] A. R. Champneys and V. Kirk, “The Entwined Wiggling of Homoclinic Curves Emerging from Saddle-Node/Hopf Instabilities,” Physics D: Nonlinear Phenomena, Vol. 195, No. 1-2, 2004, pp. 77-105.
http://dx.doi.org/10.1016/j.physd.2004.03.004