Back
 JAMP  Vol.1 No.7 , December 2013
Simultaneous Periodic Orbits Bifurcating from Two Zero-Hopf Equilibria in a Tritrophic Food Chain Model
Abstract: We are interested in the coexistence of three species forming a tritrophic food chain model. Considering a linear grow for the lowest trophic species or prey, and a type III Holling functional response for the middle and highest trophic species (first and second predator respectively). We prove that this model exhibits two small amplitud periodic solutions bifurcating simultaneously each one from one of the two zero-Hopf equilibrium points that the model has adequate values of its parameters. As far as we know, this is the first time that the phenomena appear in the literature related with food chain models.  
Cite this paper: Castellanos, V. , Llibre, J. and Quilantan, I. (2013) Simultaneous Periodic Orbits Bifurcating from Two Zero-Hopf Equilibria in a Tritrophic Food Chain Model. Journal of Applied Mathematics and Physics, 1, 31-38. doi: 10.4236/jamp.2013.17005.
References

[1]   J. Wang, J. Shi and J. E. Wei, “Predator-Prey System with Strong Allee Effect in Prey,” Journal of Mathematical Biology, Vol. 62, No. 3, 2011, pp. 291-331.
http://dx.doi.org/10.1007/s00285-010-0332-1

[2]   S. M. Baer, B. Li and H. L. Smith, “Multiple Limit Cycles in the Standard Model of Three Species Competition for Three Essential Resources,” Journal of Mathematical Biology, Vol. 52, No. 6, 2006, pp. 745-760.
http://dx.doi.org/10.1007/s00285-005-0367-x

[3]   X. Li, H. Wang and Y. Kuang, “Global Analysis of a Stoichiometric Producer-Grazer Model with Holling Type Functional Responses,” Journal of Mathematical Biology, Vol. 63, No. 5, 2011, pp. 901-932.
http://dx.doi.org/10.1007/s00285-010-0392-2

[4]   H. Freedman and P. Waltman, “Mathematical Analysis of Some Three-Species Food-Chain Models,” Mathematical Biosciences, Vol. 33, No. 3-4, 1977, pp. 257-276.
http://dx.doi.org/10.1016/0025-5564(77)90142-0

[5]   H. I. Freedman and J. W. H. So, “Global Stability and Persistence of Simple Food Chains,” Mathematical Biosciences, Vol. 76, No. 1, 1985, pp. 69-86.
http://dx.doi.org/10.1016/0025-5564(85)90047-1

[6]   T. C. Gard, “Persistence in Food Chains with General Interactions,” Mathematical Biosciences, Vol. 51, No. 1-2, 1980, pp. 165-174.
http://dx.doi.org/10.1016/0025-5564(80)90096-6

[7]   J. P. Francoise and J. Llibre, “Analytical Study of a Higher-Order Hopf Bifurcation in a Tritrophic Food Chain Model,” Applied Mathematics and Computation, Vol. 217, No. 17, 2011, pp. 7146-7154.
http://dx.doi.org/10.1016/j.amc.2011.01.109

[8]   A. Buica and J. Llibre, “Averaging Methods for Finding Periodic Orbits via Brouwer Degree,” Bulletin des Sciences Mathématiques, Vol. 128, No. , 2004, pp. 7-22.
http://dx.doi.org/10.1016/j.bulsci.2003.09.002

[9]   J. Sanders, F. Verhulst and J. Murdock, “Averaging Method in Nonlinear Dynamical Systems,” 2nd Edition, Applied Mathematical Sciences, Vol. 59, Springer, New York, 2007.

[10]   F. Verhulst, “Nonlinear Differential Equations and Dynamical Systems,” 2nd Edition, Universitext, Springer-Verlag, Berlin, 1996.

[11]   K. Cheng, “Uniqueness of a Limit Cycle of a Predator-Prey System,” SIAM Journal on Mathematical Analysis, Vol. 12, No. 4, 1981, pp. 541-548.
http://dx.doi.org/10.1137/0512047

[12]   B. Deng, “Food Chain Chaos with Canard Explosion,” Chaos, Vol. 14, No. 4, 2004, pp. 1083-1092.
http://dx.doi.org/10.1063/1.1814191

[13]   B. Deng and G. Hines, “Food Chain Chaos Due to Shilnikov’s Orbit,” Chaos, Vol. 12, No. 3, 2002, pp. 533-538.

[14]   Yu. A. Kuznetsov, O. De Feo and D. Rinaldi, “Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model,” SIAM Journal on Mathematical Analysis, Vol. 62, 2001, pp. 462-487.
http://dx.doi.org/10.1137/S0036139900378542

[15]   R. May, “Limit Cycles in Predator-Prey Communities,” Science, Vol. 177, No. 4052, 1972, pp. 900-902.
http://dx.doi.org/10.1126/science.177.4052.900

[16]   S. Muratori and S. Rinaldi, “A Dynamical System with Hopf Bifurcations and Catastrophes,” Applied Mathematics and Computation, Vol. 29, 1989, pp. 1-15.
http://dx.doi.org/10.1016/0096-3003(89)90036-2

[17]   C. S. Holling, “Some Characteristics of Simple Types of Predation and Parasitism,” Entomological Society of Canada, Vol. 91, 1959, pp. 385-398.
http://dx.doi.org/10.4039/Ent91385-7

[18]   J. Guckenheimer, “On a Codimension Two Bifurcation, Dynamical Systems and Turbulence, Warwick 1980 (Coventry, 1979/1980),” Lecture Notes in Mathematics, Vol. 898, No. 654886, Springer, Berlin, 1981, pp. 99-142.

[19]   J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,” Applied Mathematical Sciences, Vol. 42, Springer Verlag, 2002.

[20]   M. Han, “Existence of Periodic Orbits and Invariant Tori in Codimension Two Bifurcations of Three-Dimensional Systems,” Journal of Systems Science and Mathematical Sciences, Vol. 18, No. 4, 1998, pp. 403-409.

[21]   Yu. A. Kuznetsov, “Elements of Applied Bifurcation Theory,” 3rd Edition, Applied Mathematical Sciences, Vol. 12, Springer-Verlag, New York, 2004.

[22]   J. Scheurle and J. Marsden, “Bifurcation to Quasi-Periodic Tori in the Interaction of Steady State and Hopf Bifurcations,” SIAM Journal on Mathematical Analysis, Vol. 15, No. 6, 1984, pp. 1055-1074.
http://dx.doi.org/10.1137/0515082

[23]   I. Baldomá and T. M. Seara, “Brakdown of Heteroclinic Orbits for Some Analytic Unfoldings of the Hopf-Zero Singulairty,” Journal of Nonlinear Science, Vol. 16, No. 6, 2006, pp. 543-582.
http://dx.doi.org/10.1007/s00332-005-0736-z

[24]   I. Baldomá and T. M. Seara, “The Inner Equation for Genereic Analytic Unfoldings of the Hopf-Zero Singularity,” Discrete and Continuous Dynamical Systems: Series B, Vol. 10, No. 2-3, 2008, pp. 232-347.

[25]   H. W. Broer and G. Vegter, “Subordinate Silnikov Bifurcations Near Some Singularities of Vector Fields Having Low Codimension,” Ergodic Theory and Dynamical Systems, Vol. 4, No. 4, 1984, pp. 509-525.
http://dx.doi.org/10.1017/S0143385700002613

[26]   A. R. Champneys and V. Kirk, “The Entwined Wiggling of Homoclinic Curves Emerging from Saddle-Node/Hopf Instabilities,” Physics D: Nonlinear Phenomena, Vol. 195, No. 1-2, 2004, pp. 77-105.
http://dx.doi.org/10.1016/j.physd.2004.03.004

 
 
Top