Parametric Dirac Delta to Simplify the Solution of Linear and Nonlinear Problems with an Impulsive Forcing Function

Show more

References

[1] E. Chicurel-Uziel, “Dirac Delta Representation by Exact Parametric Equations. Application to Impulsive Vibration Systems,” Journal of Sound and Vibration, Vol. 305, No. 11-12, 2007, pp. 134-150.

http://dx.doi.org/10.1016/j.jsv.2007.03.087

[2] A. D. Snider, “Partial Differential Equations,” Prentice Hall, Upper Saddle River, 1999, p. 35.

[3] E. Kreyszig, “Advanced Engineering Mathematics,” Wiley, New York, 2006, p. 234.

[4] I. Stakgold, “Green’s Functions and Boundary Value Problems,” Wiley, New York, 1998, pp. 57-58.

[5] E. Butkov, “Mathematical Physics,” Addison Wesley, Reading, 1976, p. 114.

[6] M. D. Greenberg, “Advanced Engineering Mathematics,” Prentice Hall, Upper Saddle River, 1998, p. 269.

[7] R. F. Hoskins, “Generalized Functions,” John Wiley & Sons, Chichester, 1979, p. 42.

[8] E. Chicurel-Uziel, “Parameterization to Avoid the Gibbs Phenomenon,” In: N. Mastorakis, M. Demiralp and V. M. Mladenov, Eds., Computers and Simulation in Modern Science, Vol. IV, WSEAS Press, Chapter 17, 2010, pp. 186-195.

[9] R. Haberman, “Applied Partial Differential Equations,” Pearson Prentice Hall, Upper Saddle River, 2004.

[10] K. D. Cole, J. V. Beck, A. Haji-Sheikh and Bahman Litkouhi, “Heat Conduction Using Green’s Functions,” 2nd Edition, CRC Press, Taylor & Francis Group, 2011, pp. 28-29.