Models and Algorithms for Diffuse Optical Tomographic System

Show more

References

[1] S. R. Arridge, “Optical Tomography in Medical Imaging,” Inverse Problems, Vol. 15, No. 2, 1999, pp. R41-R93.

[2] S. R. Arridge, M. Schweiger, M. Hiraoka and D. T. Delpy, “Finite Element Approach for Modelling Photon Transport in Tissue,” Medical Physics, Vol. 20, 1993, pp. 299-309.

http://dx.doi.org/10.1118/1.597069

[3] B. Kanmani and R. M. Vasu, “Noise-Tolerance Analysis for Detection and Reconstruction of Absorbing Inhomogeneities with Diffuse Optical Tomography Using Singleand Phase-Correlated Dual-Source Schemes,” Physics in Medicine and Biology, Vol. 52, 2007, p. 1409.

http://dx.doi.org/10.1088/0031-9155/52/5/013

[4] B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani and K. D. Paulsen, “Image Analysis Methods for Diffuse Optical Tomography,” Journal of Biomedical Optics, Vol. 11, 2006, Article ID: 1033001.

http://dx.doi.org/10.1117/1.2209908

[5] S. K. Biswas, K. Rajan, R. M. Vasu and D. Roy, “Accelerated Gradient Based Diffuse Optical Tomographic Image Reconstruction,” Medical Physics, Vol. 38, 2011, p. 539.

http://dx.doi.org/10.1118/1.3531572

[6] S. K. Biswas, K. Rajan and R. M. Vasu, “Practical Fully 3-D Reconstruction Algorithm for Diffuse Optical Tomography,” Journal of the Optical Society of America A, Vol. 29, 2012, p. 1017.

http://dx.doi.org/10.1364/JOSAA.29.001017

[7] D. A. Boas, J. P. Culver, J. J. Stott and A. K. Dunn, “Three Dimensional Monte Carlo Code for Photon Migration through Complex Heterogeneous Media Including the Adult Human Head,” Optics Express, Vol. 10, No. 3, 2002, pp. 159-170.

http://dx.doi.org/10.1364/OE.10.000159

[8] G. S. Abdoulaev and A. H. Hielscher, “Three-Dimensional Optical Tomography with the Equation of Radiative Transfer,” Journal of Electronic Imaging, Vol. 12, No. 4, 2003, pp. 594-601.

http://dx.doi.org/10.1117/1.1587730

[9] M. Schweiger, S. R. Arridge and I. Nissila, “GaussNewton Method for Image Reconstruction in Diffuse Optical Tomography,” Physics in Medicine and Biology, Vol. 50, No. 10, 2005, pp. 2365-2386.

http://dx.doi.org/10.1088/0031-9155/50/10/013

[10] C. K. Hayakawa and J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg and V. Venugopalan “Perturbation Monte Carlo Methods to Solve Inverse Photon Migration Problems in Heterogeneous Tissues,” Optics Letters, Vol. 26, No. 17, 2001, pp. 1335-1337.

[11] P. K. Yalavarthy, K. Karlekar, H. S. Patel, R. M. Vasu, M. Pramanik, P. C. Mathias, B. Jain and P. K. Gupta, “Experimental Investigation of Perturbation Monte-Carlo Based Derivative Estimation for Imaging Low-Scattering Tissue,” Optics Express, Vol. 13, No. 3, 2005, pp. 985-988.

[12] A. Sassaroli, “Fast Perturbation Monte Carlo Method for Photon Migration in Heterogeneous Turbid Media,” Optics Letters, Vol. 36, No. 11, 2011, pp. 2095-2097.

http://dx.doi.org/10.1364/OL.36.002095

[13] B. W. Pogue, M. S. Patterson, H. Jiang and K. D. Paulsen, “Initial Assessment of a Simple System for Frequency Domain Diffuse Optical Tomography,” Physics in Medicine and Biology, Vol. 40, 1995, pp. 1709-1729.

http://dx.doi.org/10.1088/0031-9155/40/10/011

[14] T. Tarvainen, M. Vauhkonen, V. Kolemainen, S. R. Arridge and J. P. Kaipio, “Coupled Radiative Transfer Equation and Diffusion Approximation Model for Photon Migration in Turbid Medium with Low-Scattering and Non-Scattering Regions,” Physics in Medicine and Biology, Vol. 50, 2005, pp. 4913-4930.

http://dx.doi.org/10.1088/0031-9155/50/20/011

[15] K. Levenburg, “A Method for the Solution of Certain Non-Linear Problems in Least-Squares,” Quarterly of Applied Mathematics, Vol. 2, 1944, p. 164.

[16] D. W. Marquardt, “An Algorithm for the Least-Square Estimation of Non-Linear Parameters,” SIAM Journal on Applied Mathematics, Vol. 11, 1963, p. 431.

http://dx.doi.org/10.1137/0111030

[17] C. G. Broyden, “On the Discovery of the Good Broyden Method,” Mathematical Programming, Vol. 87, No. 2, 2000, p. 209.

[18] C. G. Broyden, “A Class of Methods for Solving Nonlinear Simultaneous Equations,” Mathematics of Computation, Vol. 19, 1965, pp. 577-593.

[19] H. Wang and R. P. Tewakson, “Quasi-Gauss-Newton Method for Solving Non-Linear Algebraic Equations,” Computers & Mathematics with Applications, Vol. 25, 1993, pp. 53-63.

[20] R. H. Byrd, H. Khalfan and R. B. Schnabel, “A Theoretical and Experimental Study of the Symmetric Rank One Update,” Technical Report CU-CS-489-90, University of Colorado, 2002

[21] J. Branes, “An Algorithm for Solving Nonlinear Equations Based on the Secant Method,” Computer Journal, Vol. 8, No. 1, 1965, pp. 66-72.

[22] J. E. Dennis Jr. and R. B. Schnabel, “Numerical Methods for Unconstrained Optimization and Nonlinear Equations,” Prentice-Hall, Englewood Cliffs, 1983.

[23] S. Schlenkrich, A. Griewank and A. Walther, “On the Local Convergence of Adjoint Broyden Methods,” Mathematical Programming, Vol. 121, No. 2, 2010, pp. 221-247.

[24] B. W. Pogue, T. McBride, J. Prewitt, U. L. Osterberg and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Applied Optics, Vol. 38, 1999, pp. 2950-2961.

http://dx.doi.org/10.1364/AO.38.002950

[25] B. Banerjee and D. Roy and R. M. Vasu, “A PseudoDynamical Systems Approach to a Class of Inverse Problems in Engineering,” Proceedings of the Royal Society A, Vol. A465, 2009, pp. 1561-1579.

[26] B. Banerjee and D. Roy and R. M. Vasu, “A PseudoDynamic Sub-Optimal Filter for Elastography under Static Loading and Measurement,” Physics in Medicine and Biology, Vol. 54, 2009, pp. 285-305.

http://dx.doi.org/10.1088/0031-9155/54/2/008