OJBD  Vol.3 No.4 , December 2013
AKT3 rSNPs, Transcriptional Factor Binding Sites and Human Disease
Abstract: Seven rSNPs (rs10157763, rs10927067, rs12031994, rs2125230, rs2345994, rs4132509 and rs4590646) in intron one of thev-akt murine thymoma viral oncogene homolog 3 (AKT3) gene have been significantly associated with either Chronic Mountain Sickness, Renal Cell Carcinoma risk or Aggressive Prostate Cancer. These rSNP alleles alter the DNA landscape for potential transcriptional factors (TFs) to attach, resulting in changes in transcriptional factor binding sites (TFBS). The alleles of each rSNP were found to produce unique TFBS resulting in potential changes in TF AKT3 regulation. These regulatory changes are discussed with respect to the three diseases.
Cite this paper: N. E. Buroker, "AKT3 rSNPs, Transcriptional Factor Binding Sites and Human Disease," Open Journal of Blood Diseases, Vol. 3 No. 4, 2013, pp. 116-129. doi: 10.4236/ojbd.2013.34023.

[1]   A. G. Bader, S. Kang, L. Zhao and P. K. Vogt, “Oncogenic PI3K Deregulates Transcription and Translation,” Nature Reviews. Cancer, Vol. 5, No. 12, 2005, pp. 921-929.

[2]   J. Karar and A. Maity, “PI3K/AKT/mTOR Pathway in Angiogenesis,” Frontiers in Molecular Neuroscience, Vol. 4, 2011, p. 1.

[3]   J. R. Testa and A. Bellacosa, “AKT Plays a Central Role in Tumorigenesis,” Proceedings of the National Academy Sciences of the United States of America, Vol. 98, No. 20, 2001, pp. 10983-10985.

[4]   N. E. Buroker, X. H. Ning, Z. N. Zhou, K. Li, W.J. Cen, X. F. Wu, W. Z. Zhu, C. R. Scott and S. H. Chen, “AKT3, ANGPTL4, eNOS3, and VEGFA Associations with high Altitude Sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau,” International Journal of Hematology, Vol. 96, No. 2, 2012, pp. 200-213.

[5]   N. A. Lavender, E. N. Rogers, S. Yeyeodu, J. Rudd, T. Hu, J. Zhang, G. N. Brock, K. S. Kimbro, J. H. Moore, D. W. Hein and L. C. Kidd, “Interaction among Apoptosis-Associated Sequence Variants and Joint Effects on Aggressive Prostate Cancer,” BMC Medical Genomics, Vol. 5, No. 11, 2012 , p. 1-15.

[6]   X. Shu, J. Lin, C. G. Wood, N. M. Tannir and X. Wu, “Energy Balance, Polymorphisms in the mTOR Pathway, and Renal Cell Carcinoma Risk,” Journal of the National Cancer Institute, Vol. 105, No. 6, 2013, pp. 424-432.

[7]   J. C. Knight, “Functional Implications of Genetic Varia- tion in Non-Coding DNA for Disease Susceptibility and Gene Regulation,” Clinical Science, Vol. 104, No. 5, 2003, pp. 493-501.

[8]   J. C. Knight, “Regulatory Polymorphisms Underlying Complex Disease Traits,” Journal of Molecular Medicine, Vol. 83, No. 2, 2005, pp. 97-109.

[9]   X. Wang, D. J. Tomso, X. Liu and D. A. Bell, “Single Nucleotide Polymorphism in Transcriptional Regulatory Regions and Expression of Environmentally Responsive Genes,” Toxicology and Applied Pharmacology, Vol. 207, No. 2, 2005, pp. 84-90.

[10]   X. Wang, D. J. Tomso, B. N. Chorley, H. Y. Cho, V. G. Cheung, S. R. Kleeberger and D. A. Bell, “Identification of Polymorphic Antioxidant Response Elements in the Human Genome,” Human Molecular Genetics, Vol. 16, No. 10, 2007, pp. 1188-1200.

[11]   F. Claessens, G. Verrijdt, E. Schoenmakers, A. Haelens, B. Peeters, G. Verhoeven and W. Rombauts, “Selective DNA Binding by the Androgen Receptor as a Mechanism for Hormone-Specific Gene Regulation,” The Journal of Steroid Biochemistry and Molecular Biology, Vol. 76, No. 1-5, 2001, pp. 23-30.

[12]   M. H. Hsu, U. Savas, K. J. Griffin and E. F. Johnson, “Regulation of Human Cytochrome P450 4F2 Expression by Sterol Regulatory Element-Binding Protein and Lovastatin,” Journal of Biological Chemistry, Vol. 282, No. 8, 2007, pp. 5225-5236.

[13]   H. Takai, S. Araki, M. Mezawa, D. S. Kim, X. Li, L. Yang, Z. Li, Z. Wang, Y. Nakayama and Y. Ogata, “AP1 Binding Site Is Another Target of FGF2 Regulation of Bone Sialoprotein Gene Transcription,” Gene, Vol. 410, No. 1, 2008, pp. 97-104.

[14]   N. E. Buroker, J. Y. Huang, J. Barboza, D. R. Ledee, R. J. Eastman Jr., H. Reinecke, X. H. Ning, J. A. Bassuk and M. A. Portman, “The Adaptor-Related Protein Complex 2, Alpha 2 Subunit (AP2α2) Gene Is a Peroxisome Proliferator-Activated Receptor Cardiac Target Gene,” The Protein Journal, Vol. 31, No. 1, 2012, pp. 75-83.

[15]   C. N. Huang, S. P. Huang, J. B. Pao, T. C. Hour, T. Y. Chang, Y. H. Lan, T. L. Lu, H. Z. Lee, S. H. Juang, P. P. Wu, C. Y. Huang, C. J. Hsieh and B. Y. Bao, “Genetic Polymorphisms in Oestrogen Receptor-Binding Sites Affect Clinical Outcomes in Patients with Prostate Cancer Receiving Androgen-Deprivation Therapy,” Journal of Internal Medicine, Vol. 271, No. 5, 2012, pp. 499-509.

[16]   C. N. Huang, S. P. Huang, J. B. Pao, T. Y. Chang, Y. H. Lan, T. L. Lu, H. Z. Lee, S. H. Juang, P. P. Wu, Y. S. Pu, C. J. Hsieh and B. Y. Bao, “Genetic Polymorphisms in Androgen Receptor-Binding Sites Predict Survival in Prostate Cancer Patients Receiving Androgen-Deprivation Therapy,” Annals of Oncology: Official Journal of the European Society for Medical Oncology, Vol. 23, No. 3, 2012, pp. 707-713.

[17]   B. Yu, H. Lin, L. Yang, K. Chen, H. Luo, J. Liu, X. Gao, X. Xia and Z. Huang, “Genetic Variation in the Nrf2 Promoter Associates with Defective Spermatogenesis in Humans,” Journal of Molecular Medicine, Vol. 90, No. 11, 2012, pp. 1333-1342.

[18]   J. Wu, M. H. Richards, J. Huang, L. Al-Harthi, X. Xu, R. Lin, F. Xie, A. W. Gibson, J. C. Edberg and R. P. Kimberly, “Human FasL Gene Is a Target of β-Catenin/T-Cell Factor Pathway and Complex FasL Haplotypes Alter Promoter Functions,” PLoS ONE, Vol. 6, No. 10, 2011, Article ID: e26143.

[19]   M. Alam, V. Pravica, A. A. Fryer, C. P. Hawkins and I. V. Hutchinson, “Novel Polymorphism in the Promoter Region of the Human Nerve Growth-Factor Gene,” International Journal of Immunogenetics, Vol. 32, No. 6, 2005, pp. 379-382.

[20]   J. C. Bryne, E. Valen, M. H. Tang, T. Marstrand, O. Winther, I. da Piedade, A. Krogh, B. Lenhard and A. Sandelin, “JASPAR, the Open Access Database of Transcription Factor-Binding Profiles: New Content and Tools in the 2008 Update,” Nucleic Acids Research, Vol. 36, Suppl. 1, 2008, pp. D102-D106.

[21]   A. Sandelin, W. Alkema, P. Engstrom, W. W. Wasserman and B. Lenhard, “JASPAR: An Open-Access Database for Eukaryotic Transcription Factor Binding Profiles,” Nucleic Acids Research, Vol. 32, Suppl. 1, 2004, pp. D91-D94.

[22]   A. Sandelin, W. W. Wasserman and B. Lenhard, “Consite: web-Based Prediction of Regulatory Elements Using Cross-Species Comparison,” Nucleic Acids Research, Vol. 32, Suppl. 2, 2004, pp. W249-W252.

[23]   E. Pennisi, “The Biology of Genomes. Disease Risk Links to Gene Regulation,” Science, Vol. 332, No. 6033, 2011, p. 1031.

[24]   V. Kumar, C. Wijmenga and S. Withoff, “From Genome- Wide Association Studies to Disease Mechanisms: Celiac Disease as a Model for Autoimmune Diseases,” Seminars in Immunopathology, Vol. 34, No. 4, 2012, pp. 567-580.

[25]   L. A. Hindorff, P. Sethupathy, H. A. Junkins, E. M. Ramos, J. P. Mehta, F. S. Collins and T. A. Manolio, “Potential Etiologic and Functional Implications of Genome-Wide Association Loci for Human Diseases and Traits,” Proceedings of the National Academy Sciences of the United States of America, Vol. 106, No. 23, 2009, pp. 9362-9367.

[26]   V. Kumar, H. J. Westra, J. Karjalainen, D. V. Zhernakova, T. Esko, B. Hrdlickova, R. Almeida, A. Zhernakova, E. Reinmaa, U. Vosa, M. H. Hofker, R. S. Fehrmann, J. Fu, S. Withoff, A. Metspalu, L. Franke and C. Wijmenga, “Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA Expression,” PLoS Genet, Vol. 9, No. 1, 2013, Article ID: e1003201.

[27]   B. N. Chorley, X. Wang, M. R. Campbell, G. S. Pittman, M. A. Noureddine and D. A. Bell, “Discovery and Verification of Functional Single Nucleotide Polymorphisms in Regulatory Genomic Regions: Current and Developing Technologies,” Mutation Research, Vol. 659, No. 1-2, 2008, pp. 147-157.

[28]   L. Prokunina and M. E. Alarcon-Riquelme, “Regulatory SNPs in Complex Diseases: Their Identification and Functional Validation,” Expert Reviews in Molecular Medicine, Vol. 6, No. 10, 2004, pp. 1-15.

[29]   P. R. Buckland, “The Importance and Identification of Regulatory Polymorphisms and Their Mechanisms of Action,” Biochimica et Biophysica Acta, Vol. 1762, No. 1, 2006, pp. 17-28.

[30]   W. Sadee, D. Wang, A. C. Papp, J. K. Pinsonneault, R. M. Smith, R. A. Moyer and A. D. Johnson, “Pharmacogenomics of the RNA World: Structural RNA Polymorphisms in Drug Therapy,” Clinical Pharmacology and Therapeutics, Vol. 89, No. 3, 2011, pp. 355-365.

[31]   R. Siegel, D. Naishadham and A. Jemal, “Cancer Statistics, 2012,” CA: A Cancer Journal for Clinicians, Vol. 62, No. 1, 2012, pp. 10-29.

[32]   W. H. Chow, S. S. Devesa, J. L. Warren and J. F. Frau- meni Jr., “Rising Incidence of Renal Cell Cancer in the United States,” JAMA, Vol. 281, No. 17, 1999, pp. 1628- 1631.

[33]   B. Schlehofer, W. Pommer, A. Mellemgaard, J. H. Stew- art, M. McCredie, S. Niwa, P. Lindblad, J. S. Mandel, J. K. McLaughlin and J. Wahrendorf, “International Renal- Cell-Cancer Study. VI. The Role of Medical and Family History,” International Journal of Cancer, Vol. 66, No. 6, 1996, pp. 723-726.<723::AID-IJC2>3.0.CO;2-1

[34]   J. Clague, J. Lin, A. Cassidy, S. Matin, N. M. Tannir, P. Tamboli, C. G. Wood and X. Wu, “Family History and Risk of Renal Cell Carcinoma: Results from a Case-Control Study and Systematic Meta-Analysis,” Cancer Epide- miology Biomarkers & Prevention, Vol. 18, No. 3, 2009, pp. 801-807.

[35]   M. L. Nickerson, M. B. Warren, J. R. Toro, V. Matrosova, G. Glenn, M. L. Turner, P. Duray, M. Merino, P. Choyke, C. P. Pavlovich, N. Sharma, M. Walther, D. Munroe, R. Hill, E. Maher, C. Greenberg, M. I. Lerman, W. M. Linehan, B. Zbar and L. S. Schmidt, “Mutations in a Novel Gene Lead to Kidney Tumors, Lung Wall Defects, and Benign Tumors of the Hair Follicle in Patients with the Birt-Hogg-Dube Syndrome,” Cancer Cell, Vol. 2, No. 2, 2002, pp. 157-164.

[36]   American Cancer Society, “Cancer Facts and Figures,” 2012.

[37]   M. Yeager, N. Orr, R. B. Hayes, K. B. Jacobs, P. Kraft, S. Wacholder, M. J. Minichiello, P. Fearnhead, K. Yu, N. Chatterjee, Z. Wang, R. Welch, B. J. Staats, E. E. Calle, H. S. Feigelson, M. J. Thun, C. Rodriguez, D. Albanes, J. Virtamo, S. Weinstein, F. R. Schumacher, E. Giovannucci, W. C. Willett, G. Cancel-Tassin, O. Cussenot, A. Valeri, G. L. Andriole, E. P. Gelmann, M. Tucker, D. S. Gerhard, J. F. Fraumeni Jr., R. Hoover, D. J. Hunter, S. J. Chanock and G. Thomas, “Genome-Wide Association Study of Prostate Cancer Identifies a Second Risk Locus at 8q24,” Nature Genetics, Vol. 39, No. 5, 2007, pp. 645-649.

[38]   J. E. Phillips and V. G. Corces, “CTCF: Master Weaver of the Genome,” Cell, Vol. 137, No. 7, 2009, pp. 1194-1211.

[39]   M. Tang, B. Chen, T. Lin, Z. Li, C. Pardo, C. Pampo, J. Chen, C. L. Lien, L. Wu, L. Ai, H. Wang, K. Yao, S. P. Oh, E. Seto, L. E. Smith, D. W. Siemann, M. P. Kladde, C. L. Cepko and J. Lu, “Restraint of Angiogenesis by Zinc Finger Transcription Factor CTCF-Dependent Chromatin Insulation,” Proceedings of the National Academy Sciences of the United States of America, Vol. 108, No. 37, 2011, pp. 15231-15236.