OJMetal  Vol.3 No.4 , December 2013
Effect of Alumina Particles Addition on Physico-Mechanical Properties of AL-Matrix Composites
ABSTRACT
Metal-matrix composites (MMCs) are attracting considerable interest worldwide because of their superior mechanical and tribological properties. This study describes multifactor-based experiments that were applied to research and investigates Aluminum matrix composite reinforced with 5, 10 & 15 wt% Alumina particles. Mechanical mixing technique was used for fabrication. Sintering was carried out in a vacuum furnace at 600°C for 1 hr. The effects of Alumina percentage on the density, microstructure, both electrical & thermal conductivities, hardness and compression strength was investigated. The results showed that sample containing 5 wt% Alumina is near-fully dense. Also it has the highest hardness and compression strength.

Cite this paper
M. Mohammed, O. Elkady and A. Abdelhameed, "Effect of Alumina Particles Addition on Physico-Mechanical Properties of AL-Matrix Composites," Open Journal of Metal, Vol. 3 No. 4, 2013, pp. 72-79. doi: 10.4236/ojmetal.2013.34011.
References
[1]   M. Kok, “Production and Mechanical Properties of AL2O3 Particle-Reinforced 2024 Aluminum Alloy Composites,” Journal of Materials Processing Technology, Vol. 161, No. 3, 2005, pp. 381-387. http://dx.doi.org/10.1016/j.jmatprotec.2004.07.068

[2]   A. Mazahery and M. O. Shabani, “Nano-Sized Silicon Carbide Reinforced Commercial Casting Aluminum Alloy Matrix: Experimental and Novel Modeling Evaluation,” Powder Technology, Vol. 217, 2012, pp. 558-565. http://dx.doi.org/10.1016/j.powtec.2011.11.020

[3]   M. O. Shabani and A. Mazahery, “Application of FEM and ANN in Characterization of Al Matrix Nano Composites Using Various Training Algorithms, Metall,” Metallurgical and Materials Transactions A, Vol. 43, No. 6, 2012, pp. 2158-2165. http://dx.doi.org/10.1007/s11661-011-1040-1

[4]   A. M. Gokhale and G. R. Patel, “Analysis of Variability in Tensile Ductility of a Semi-Solid Metal Cast A356 Al-Alloy,” Materials Science and Engineering: A, Vol. 392, No. 1-2, 2005, pp. 184-190. http://dx.doi.org/10.1016/j.msea.2004.09.051

[5]   X. Jian, H. Xu, T. T. Meek and Q. Han, “Effect of Power Ultrasound on Solidi?cation of Aluminum A356 Alloy,” Materials Letters, Vol. 59, No. 2-3, 2005, pp. 190-193. http://dx.doi.org/10.1016/j.matlet.2004.09.027

[6]   X. Chen, H. Geng and Y. Li, “Study on the Eutectic Modification Level of Al-7Si Alloy by Computer Aided Recognition of Thermal Analysis Cooling Curves,” Materials Science and Engineering: A, Vol. 419, No. 1-2, 2006, pp. 283-289. http://dx.doi.org/10.1016/j.msea.2005.12.036

[7]   G. Heiberg, K. Nogita, A. K. Dahle and L. Arnberg, “Columnar to Equiaxed Transition of Eutectic in Hypoeutectic Aluminium-Silicon Alloys,” Acta Material, Vol. 50, No. 10, 2002, pp. 2537-2546. http://dx.doi.org/10.1016/S1359-6454(02)00081-2

[8]   A. Mazahery and M. O. Shabani, “In?uence of the Hard Coated B4C Particulates on Wear Resistance of Al-Cu Alloys,” Composites: Part B, Vol. 43, No. 3, 2012, pp. 1302-1308.

[9]   A. Mazahery and M. O. Shabani, “Characterization of Wear Mechanisms in Sintered Fe-1.5 Wt% Cu Alloys,” Archives of Metallurgy and Materials, Vol. 57, No. 1, 2012, pp. 93-103.

[10]   M. O. Shabani and A. Mazahery, “Optimization of Process Conditions in Casting Aluminum Matrix Composites via Interconnection of Artificial Neurons and Progressive Solutions,” Ceramics International, Vol. 38, No. 6, 2012, pp. 4541-4547. http://dx.doi.org/10.1016/j.ceramint.2012.02.031

[11]   S. Chung and B. H. Hwang, “A Microstructural Study of the Wear Behaviour of SiCp/Al Composites,” Tribology International, Vol. 27, No. 5, 1994, pp. 307-314. http://dx.doi.org/10.1016/0301-679X(94)90024-8

[12]   J. S. Benjamin and M. J. Bamford, “Dispersion Strengthened Aluminum Made by Mechanical Alloying,” Metallurgical and Materials Transactions A, Vol. 8, No. 8, 1997, pp. 1301-1305. http://dx.doi.org/10.1007/BF02643845

[13]   M. H. Enayati and Z. Rahmani, “Fabrication of Nano Structured Al-Al4C3 Alloys,” Materials Science and Engineering: A, Vol. 25, No. 4, 2004, pp. 515-521.

[14]   S. Kleiner, F. Bertocco, F. A. Khalid and O. Beffort, “Decomposition of Process Control Agent during Mechanical Milling and Its Influence on Displacement Reaction in the Al-TiO System,” Materials Chemistry and Physics, Vol. 89, No. 2-3, 2005, pp. 362-366. http://dx.doi.org/10.1016/j.matchemphys.2004.09.014

[15]   Z. Razavi Hesabi, A. Simchi and S. M. Seyed Reihani, “Structural Evolution during Mechanical Milling of Nanometric and Micrometric Al2O3 Reinforced Al Matrix Composite,” Materials Science and Engineering: A, Vol. 428, No. 1-2, 2006, pp. 159-168. http://dx.doi.org/10.1016/j.msea.2006.04.116

[16]   E. M. Ruiz-Navas, J. B. Fogagnolo, F. Velasco and L. Froyn, “One Step Production of Aluminum Matrix Composite Powder by Mechanical Alloying,” Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 11, 2006, pp. 2114-2120. http://dx.doi.org/10.1016/j.compositesa.2005.11.016

[17]   C. Suryanarayana, “Mechanical Alloying and Milling,” Progress in Materials Science, Vol. 46, No. 1-2, 2001, pp. 1-184. http://dx.doi.org/10.1016/S0079-6425(99)00010-9

[18]   S. M. Zebarjad and S. A. Sajjadi, “Dependency of Physical and Mechanical Properties of Mechanical Alloyed Al-Al2O3 Composite on Milling Time,” Materials and Design, Vol. 28, No. 7, 2007, pp. 2113-2120. http://dx.doi.org/10.1016/j.matdes.2006.05.020

[19]   M. Roy, B. Venkataraman, V. V. Bhanuprasad, Y. R. Mahajan and G. Sundararajan, “Correlation between the Characteristics of the Mechanically Mixed Layer and Wear Behaviour of Aluminium, Al-7075 Alloy and Al- MMCs,” Metallurgical and Materials Transactions A, Vol. 23, No. 10, 1992, pp. 2833-2846. http://dx.doi.org/10.1007/BF02651761

[20]   S. Skolianos and T. Z. Kattamis, “Tribological Properties of SiC reinforced Al-4.5% Cu-1.5% Mg Alloy Compos- ites,” Materials Science and Engineering: A, Vol. 163, No. 1, 1993, pp. 107-113. http://dx.doi.org/10.1016/0921-5093(93)90584-2

[21]   M. K. Surappa, S. V. Prasad and P. K. Rohatgi, “Wear and Abrasion of Cast Alalumina Particle Composites,” Wear, Vol. 77, No. 3, 1982, pp. 295-302. http://dx.doi.org/10.1016/0043-1648(82)90055-2

[22]   A. Mazahery and M. O. Shabani, “Investigation on Mechanical Properties of Nano-Al2O3-Reinforced Aluminum Matrix Composites,” Journal of Composite Materials, Vol. 45, No. 24, 2011, pp. 2579-2586. http://dx.doi.org/10.1177/0021998311401111

[23]   J. M. Torralba, C. E. daCost and F. Velasco, “P/M Alu- minum Matrix Composites: An Overview,” Journal of Materials Processing Technology, Vol. 133, No. 1-2, 2003, pp. 203-206. http://dx.doi.org/10.1016/S0924-0136(02)00234-0

[24]   K. H. Min, S. P. Kang, D. G. Kim and Y. D. Kim, “Sintering Characteristic of Al2O3-Reinforced 2xxx Series Al Composite Powders,” Journal of Alloys and Compounds, Vol. 400, No. 1-2, 2005, pp. 150-153. http://dx.doi.org/10.1016/j.jallcom.2005.03.070

[25]   Y. L. Shen and N. Chawla, “On the Correlation between Hardness & Tensile Strength in Particle Reinforced Metal Matrix,” Materials Science and Engineering: A, Vol. 297, No. 1, 2001, pp. 44-47.

[26]   O. A. Elkady, M. A. Abou Tabl, Z. Abdel Hamid and S. F. Moustafa, “Processing of Cu/Carbon Fiber Composites by Vortex and Powder Metallurgy Technique,” Canadian Metallurgical Quarterly, Vol. 46, No. 4, 2007, p. 433.

[27]   A. Fathy and O. EL-Kady, “Thermal Expansion and Thermal Conductivity Characteristics of Cu-Al2O3 Nanocomposites,” Material and Design, Vol. 46, 2013, pp. 355-359. http://dx.doi.org/10.1016/j.matdes.2012.10.042

[28]   E. Celebi, I. Altinsoy, T. Yener, M. Ipek, S. Zeytin and C. bindal, “An Investigation on Cemented Cu Reinforced by SiC Particles,” Proceeding of ICAMMM 2010, Sultan Qaboos, 13-15 December 2010, pp. 13-15.

[29]   A. Ibrahim, M. Abdallah, S. F. Mosatafa and A. Abousree Hegazy, “An Experimental Investigation on the W-Cu Composites,” Material and Design, Vol. 30, No. 4, 2009, pp. 1398-1403. http://dx.doi.org/10.1016/j.matdes.2008.06.068

 
 
Top