OJBD  Vol.3 No.4 , December 2013
Cytogenetic and Molecular Characterization of Hematological Neoplasm in an Ecuadorian Population

Cancer is one of the major causes of mortality in Ecuador and annually, hematological malignancies are within the top ten most common cancers. In this multicentric study, we analyzed a series of patients diagnosed with different hematological disorders between the years 1984 and 2012. Chromosome abnormalities were detected in 1886 (45.9%) patients. FISH and RT-PCR techniques were used in order to determine the presence of genetic rearrangements and complement conventional cytogenetics results. Using FISH and RT-PCR, positive cases were increased by 1.8% and 6.9% respec- tively. We analyzed fusion genes resulting from t(8;21), t(15;17), inv(16), t(9;22), 11q23 rearrangements, t(4;11) and t(1;19). The frequency of transcripts of some of these fusion genes was of particular interest as our results differ from studies on other populations. Specifically, the fusion gene BCR-ABL was present in the form of the b2/a2 transcript in 95% of CML patients and in the form of b3/a2 transcript in the remaining 5%. The PML-RARA fusion gene also showed a distinct pattern of transcript expression. This fusion gene exhibited the bcr2 (36%) and bcr3 (64%) transcripts, how- ever the bcr1 transcript was absent from our sample population. All cases carrying the CBFB-MYH11 fusion gene ex- hibited the F transcript. This was also of interest due to the rarity of this particular transcript worldwide. Finally all cases carrying the MLL-AF4 fusion gene displayed the e7-e8 transcript. The frequency of the subtypes of some fusion genes differ from those reported in other populations, possibly due to the particular genetic make-up of the Ecuadorian population, mostly mestizo, as well as environmental factors.

Cite this paper
C. Paz-y-Miño, M. Eugenia Sánchez, S. Araujo, L. Ocampo, V. Hugo Espín and P. E. Leone, "Cytogenetic and Molecular Characterization of Hematological Neoplasm in an Ecuadorian Population," Open Journal of Blood Diseases, Vol. 3 No. 4, 2013, pp. 108-115. doi: 10.4236/ojbd.2013.34022.
[1]   Facts 2013, “Leukemia & Lymphoma Society,” 2013.

[2]   P. Cueva and J. Yérez, “National Cancer Registry: Cancer Epidemiology in Quito 2003-2005,” Sociedad de Lucha contra el Cáncer, Quito, 2009.

[3]   M. San Sebastián and A. K. Hurtig, “Cancer among In- digenous People in the Amazon Basin of Ecuador, 1985-2000,” Revista Panamericana de Salud Pública, Vol. 16, No. 5, 2004, pp. 328-333.

[4]   J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide,” Lyon, France, IARC Cancer-Base No. 10 [Internet]: International Agency for Research on Cancer, 2010. http://globocan.iarc.fr

[5]   C. Y. Meng, P. J. Noor, A. Ismail, M. F. Ahid and Z. Zakaria, “Cytogenetic Profile of De Novo Acute Myeloid Leukemia Patients in Malaysia,” International Journal of Biomedical Science, Vol. 9, No. 1, 2013, pp. 26-32.

[6]   D. Rowe, S. J. Cotterill, F. M. Ross, D. J. Bunyan, S. J. Vickers, J. Bryon, et al., “Cytogeneticaly Cryptic AML1-ETO and CBF Beta-MYH11 Gene Rearrangements: Incidence in 412 Cases of Acute Myeloid Leukemia,” British Journal of Haematology, Vol. 111, No. 4, 2000, pp. 1051-1056.

[7]   C. Schoch, S. Schnittger, W. Kern, E. Lengfelder, H. Loffler, W. Hiddemann, et al., “Rapid Diagnostic Approach to PML-RARA-Positive Acute Promyelocytic Leukemia,” The Hematology Journal, Vol. 3, No. 5, 2002, pp. 259-263. http://dx.doi.org/10.1038/sj.thj.6200181

[8]   F. Marchesi, O. Annibali, E. Cerchiara, M. C. Tirindelli and G. Avvisati, “Cytogenetic Abnormalities in Adult Non-Promyelocytic Acute Myeloid Leukemia: A Concise Review,” Critical Reviews in Oncology/Hematology, Vol. 80, No. 3, 2011, pp. 331-346.

[9]   M. Mangolini, J. de Boer, V. Walf-Vorderwülbecke, R. Pieters, M. L. den Boer and O. Williams, “STAT3 Mediates Oncogenic Addiction to TEL-AML1 in t(12;21) Acute Lymphoblastic Leukemia,” Blood, Vol. 122, No. 4, 2013, pp. 542-549.

[10]   A. Daniel-Cravioto, C. R. Gonzalez-Bonilla, J. M. Mejia-Aranque, M. L. Perez-Saldivar, A. Fajardo-Gutierrez, E. Jimenez-Hernandez, et al., “Genetic Rearrangement MLL/ AF4 Is Most Frequent in Children with Acute Lymphoblastic Leukemias in Mexico City,” Leukemia & Lymphoma, Vol. 50, No. 8, 2009, pp. 1352-1360.

[11]   M. Aricò, M. G. Valsecchi, B. Carmita, M. Schappe, J. Chessells, A. Baruchel, et al., “Outcome of Treatment in Children with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia,” The New England Journal of Medicine, Vol. 342, No. 14, 2000, pp. 998-1006.

[12]   M. C. Castro-Mujica and Y. Sullcahuamán-Allende, “Molecular Subtypes of PML/RARα in Patients with Acute Promyelocytic Leukemia,” Revista Peruana de Medicina Experimental y Salud Pública, Vol. 30, No. 1, 2013, pp. 37-40.

[13]   D. Douer, S. Santillana, L. Ramezani, C. Samanez, M. L. Slovak, M. S. Lee, et al., “Acute Promyelocytic Leukaemia in Patients Originating in Latin America Is Associated with an Increased Frequency of the bcr1 Subtype of the PML/RARalpha Fusion Gene,” British Journal of Haematology, Vol. 122, No. 4, 2003, pp. 563-570.

[14]   K. Inokuchi, T. Inoue, A. Tojo, M. Futaki, K. Miyake, T. Yamada, et al., “A Possible Correlation between the Type of bcr-abl Hybrid Messenger RNA and Platelet Count in Philadelphia-Positive Chronic Myelogenous Leukemia,” Blood, Vol. 78, No.12, 1991, pp. 3125-3127.

[15]   C. Udomsakdi-Auewarakul, Y. U-Pratya, S. Boonmoh and S. Vatanavicharn, “Detection of Molecular Variants of BCR-ABL Gene in Bone Marrow and Blood of Patients with Chronic Myeloid Leukemia by Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR),” Journal of the Medical Association of Thailand, Vol. 83, No. 8, 2000, pp. 928-935.

[16]   C. Paz-y-Mino, R. Burgos, S. A. Morillo, J. C. Santos, B. F. Fiallo and P. E. Leone, “BCR-ABL Rearrangement Frequencies in CML and ALL in Ecuador, South America,” Cancer Genetics and Cytogenetics, Vol. 132, No. 1, 2002, pp. 65-67.

[17]   C. Paz-y-Mino, M. Arévalo and P. E. Leone, “B3/A3 Rearrangement in a Patient with Chronic Myeloid Leukemia,” Leukemia and Lymphoma, Vol. 44, No. 2, 2003, pp. 375-376.

[18]   American Cancer Society, “Global Cancer Facts & Figures,” 2nd Edition, American Cancer Society, Atlanta, 2011.

[19]   D. Sugapriya, S. Preethi, P. Shanhi, N. Chandra, G. Jeyaraman, P. Sachdanandam, et al., “BCR-ABL Translocation in Pediatric Acute Lymphoblastic Leukemia in Southern India,” Indian Journal of Hematology & Blood Transfusion, Vol. 28, No. 1, 2012, pp. 37-41.

[20]   M. Zucca, J. Ugalde, F. S. Arteaga, G. Biggio, V. Flore, T. Nonne, et al., “Leukemia in Children and Youths of the Azuay Province, Ecuador: 2000-2010,” International Journal of Environmental Health Research, Vol. 23, No. 1, 2013, pp. 58-65.

[21]   L. G. Shaffer, J. McGowan-Jordan and M. Schmid, “ISCN 2013: An International System for Human Cytogenetic Nomenclature (2013),” Karger, Basel, 2013.

[22]   J. M. Mejía-Aranguré, M. Bonilla, R. Lorenzana, S. Juárez-Ocana, G. de Reyes, M. L. Pérez-Saldivar, et al., “Incidence of Leukemias in Children from El Salvador and Mexico City between 1996 and 2000: Population-Based Data,” BMC Cancer, Vol. 5, 2005, p. 33.

[23]   Ministerio De Salud, “Guía Clínica Leucemia Del Adulto,” Minsal, Santiago, 2007.

[24]   P. Chomczynski and N. Sacchi, “Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phe- nol-Chloroform Extraction,” Analytical Biochemistry, Vol. 162, No. 1, 1987, pp. 156-159.

[25]   J. J. M. van Dongen, E. A. Macintyre, J. A. Gabert, E. Delabesse, V. Rossi, G. Saglio, et al., “Standardized RT-PCR Analysis of Fusion Gene Transcripts from Chromosome Aberrations in Acute Leukemia for Detection of Minimal Residual Disease,” Leukemia, Vol. 13, No. 12, 1999, pp. 1901-1928.

[26]   P. E. Leone, J. C. Pérez, S. A. Morillo and C. Paz-y-Mino, “Low Incidence of Follicular Lymphoma and t(14;18) (q32;q21) by Polymerase Chain Reaction Analysis: Observations on Ecuadorian Patients,” Cancer Genetics and Cytogenetics, Vol. 137, No. 1, 2002, pp. 72-74.

[27]   C. J. Harrison, A. Cuneo, R. Clark, B. Johansson, M. Lafage-Pochitaloff, F. Mugneret, et al., “Ten Novel 11q23 Chromosomal Partner Sites. European 11q23 Workshop participants,” Leukemia, Vol. 12, No. 5, 1998, pp. 811-822. http://dx.doi.org/10.1038/sj.leu.2401017

[28]   J. V. Melo, “The Diversity of BCR-ABL Fusion Proteins and Their Relationship to Leukemia Phenotype,” Blood, Vol. 88, No. 7, 1996, pp. 2375-2384.

[29]   J. P. Meza-Espinoza, M. Gutiérrez-Angulo, A. Vázquez-Cárdenas, J. L. Delgado-Lamas, M. A. Esparza-Flores and J. R. González-García, “Prevalence of the BCR/ABL1 Transcripts in Mexican Patients with Chronic Myelogenous Leukemia,” Revista de Investigación Clínica, Vol. 59, No. 5, 2007, pp. 338-341.

[30]   C. H. Pui and W. E. Evans, “Acute Lymphoblastic Leukemia,” The New England Journal of Medicine, Vol. 339, No. 9, 1998, pp. 605-615.

[31]   A. Biondi, A. Rambaldi, P. P. Pandolfi, V. Rossi, G. Giudici, M. Alcalay, et al., “Molecular Monitoring of the myl/Retinoic Acid Receptor-Alpha Fusion Gene in Acute Promyelocytic Leukemia by Polymerase Chain Reaction,” Blood, Vol. 80, No. 2, 1992, pp. 492-497.

[32]   F. Lo Coco, D. Diverio, B. Falini, A. Biondi, C. Nervi and P. G. Pelicci, “Genetic Diagnosis and Molecular Monitoring in the Management of Acute Promyelocytic Leukemia,” Blood, Vol. 94, No. 1, 1999, pp. 12-22.

[33]   D. Grimwade, H. Walker, F. Oliver, K. Wheatley, C. Harrison, G. Harrison, et al., “The Importance of Diagnostic Cytogenetics on Outcome in AML: Analysis of 1612 Patients Entered into the MRC AML 10 Trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties,” Blood, Vol. 92, No. 7, 1998, pp. 2322-2333.

[34]   P. P. Liu, A. Hajra, C. Wijmenga and F. S. Collins, “Molecular Pathogenesis of the Chromosome 16 Inversion in the M4Eo Subtype of Acute Myeloid Leukemia,” Blood, Vol. 85, No. 9, 1995, pp. 2289-2302.

[35]   C. Paz-y-Mino, J. C. Pérez, B. F. Fiallo and P. E. Leone, “A Polymorphism in the hMSH2 Gene [gIVS12-6T>C] Associated with Non-Hodkin Lymphomas,” Cancer Genetics and Cytogenetics, Vol. 133, No. 1, 2002, pp. 29-33.

[36]   C. Paz-y-Mino, A. López-Cortés, M. J. Munoz, B. Castro, A. Cabrera and M. E. Sánchez, “Relationship of an hRAD54 Gene Polymorphism (2290 C/T) in an Ecuadorian Population with Chronic Myelogenous Leukemia,” Genetics and Molecular Biology, Vol. 33, No. 4, 2010, pp. 646-649.

[37]   C. Paz-y-Mino, J. C. Pérez, R. Burgos, M. V. Dávalos and P. E. Leone, “The ΔF508 Mutation in Ecuador, South America,” Human Mutation, Vol. 14, No. 4, 1999, pp. 348-350.

[38]   P. E. Leone, M. Mendiola, J. Alonso, C. Paz-y-Mino and A. Pestana, “Implications of a RAD54L Polymorphism (2290C/T) in Human Meningiomas as a Risk Factor and/ or a Genetic Marker,” BMC Cancer, Vol. 3, 2003, p. 6.

[39]   P. E. Leone, P. Giménez, J. C. Collantes and C. Paz-y- Mino, “Analysis of HFE Gene Mutations (C282Y, H63D, and S65C) in the Ecuadorian Population,” Annals of Hematology, Vol. 84, No. 2, 2005, pp. 103-105.