Back
 OJBD  Vol.3 No.4 , December 2013
Cytogenetic and Molecular Characterization of Hematological Neoplasm in an Ecuadorian Population
Abstract: Cancer is one of the major causes of mortality in Ecuador and annually, hematological malignancies are within the top ten most common cancers. In this multicentric study, we analyzed a series of patients diagnosed with different hematological disorders between the years 1984 and 2012. Chromosome abnormalities were detected in 1886 (45.9%) patients. FISH and RT-PCR techniques were used in order to determine the presence of genetic rearrangements and complement conventional cytogenetics results. Using FISH and RT-PCR, positive cases were increased by 1.8% and 6.9% respec- tively. We analyzed fusion genes resulting from t(8;21), t(15;17), inv(16), t(9;22), 11q23 rearrangements, t(4;11) and t(1;19). The frequency of transcripts of some of these fusion genes was of particular interest as our results differ from studies on other populations. Specifically, the fusion gene BCR-ABL was present in the form of the b2/a2 transcript in 95% of CML patients and in the form of b3/a2 transcript in the remaining 5%. The PML-RARA fusion gene also showed a distinct pattern of transcript expression. This fusion gene exhibited the bcr2 (36%) and bcr3 (64%) transcripts, how- ever the bcr1 transcript was absent from our sample population. All cases carrying the CBFB-MYH11 fusion gene ex- hibited the F transcript. This was also of interest due to the rarity of this particular transcript worldwide. Finally all cases carrying the MLL-AF4 fusion gene displayed the e7-e8 transcript. The frequency of the subtypes of some fusion genes differ from those reported in other populations, possibly due to the particular genetic make-up of the Ecuadorian population, mostly mestizo, as well as environmental factors.
Cite this paper: C. Paz-y-Miño, M. Eugenia Sánchez, S. Araujo, L. Ocampo, V. Hugo Espín and P. E. Leone, "Cytogenetic and Molecular Characterization of Hematological Neoplasm in an Ecuadorian Population," Open Journal of Blood Diseases, Vol. 3 No. 4, 2013, pp. 108-115. doi: 10.4236/ojbd.2013.34022.
References

[1]   Facts 2013, “Leukemia & Lymphoma Society,” 2013.
http://www.lls.org/content/nationalcontent/resourcecenter/freeeducationmaterials/generalcancer/pdf/facts.pdf

[2]   P. Cueva and J. Yérez, “National Cancer Registry: Cancer Epidemiology in Quito 2003-2005,” Sociedad de Lucha contra el Cáncer, Quito, 2009.

[3]   M. San Sebastián and A. K. Hurtig, “Cancer among In- digenous People in the Amazon Basin of Ecuador, 1985-2000,” Revista Panamericana de Salud Pública, Vol. 16, No. 5, 2004, pp. 328-333.

[4]   J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide,” Lyon, France, IARC Cancer-Base No. 10 [Internet]: International Agency for Research on Cancer, 2010. http://globocan.iarc.fr

[5]   C. Y. Meng, P. J. Noor, A. Ismail, M. F. Ahid and Z. Zakaria, “Cytogenetic Profile of De Novo Acute Myeloid Leukemia Patients in Malaysia,” International Journal of Biomedical Science, Vol. 9, No. 1, 2013, pp. 26-32.

[6]   D. Rowe, S. J. Cotterill, F. M. Ross, D. J. Bunyan, S. J. Vickers, J. Bryon, et al., “Cytogeneticaly Cryptic AML1-ETO and CBF Beta-MYH11 Gene Rearrangements: Incidence in 412 Cases of Acute Myeloid Leukemia,” British Journal of Haematology, Vol. 111, No. 4, 2000, pp. 1051-1056.
http://dx.doi.org/10.1111/j.1365-2141.2000.02474.x

[7]   C. Schoch, S. Schnittger, W. Kern, E. Lengfelder, H. Loffler, W. Hiddemann, et al., “Rapid Diagnostic Approach to PML-RARA-Positive Acute Promyelocytic Leukemia,” The Hematology Journal, Vol. 3, No. 5, 2002, pp. 259-263. http://dx.doi.org/10.1038/sj.thj.6200181

[8]   F. Marchesi, O. Annibali, E. Cerchiara, M. C. Tirindelli and G. Avvisati, “Cytogenetic Abnormalities in Adult Non-Promyelocytic Acute Myeloid Leukemia: A Concise Review,” Critical Reviews in Oncology/Hematology, Vol. 80, No. 3, 2011, pp. 331-346.
http://dx.doi.org/10.1016/j.critrevonc.2010.11.006

[9]   M. Mangolini, J. de Boer, V. Walf-Vorderwülbecke, R. Pieters, M. L. den Boer and O. Williams, “STAT3 Mediates Oncogenic Addiction to TEL-AML1 in t(12;21) Acute Lymphoblastic Leukemia,” Blood, Vol. 122, No. 4, 2013, pp. 542-549.
http://dx.doi.org/10.1182/blood-2012-11-465252

[10]   A. Daniel-Cravioto, C. R. Gonzalez-Bonilla, J. M. Mejia-Aranque, M. L. Perez-Saldivar, A. Fajardo-Gutierrez, E. Jimenez-Hernandez, et al., “Genetic Rearrangement MLL/ AF4 Is Most Frequent in Children with Acute Lymphoblastic Leukemias in Mexico City,” Leukemia & Lymphoma, Vol. 50, No. 8, 2009, pp. 1352-1360.
http://dx.doi.org/10.1080/10428190903015636

[11]   M. Aricò, M. G. Valsecchi, B. Carmita, M. Schappe, J. Chessells, A. Baruchel, et al., “Outcome of Treatment in Children with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia,” The New England Journal of Medicine, Vol. 342, No. 14, 2000, pp. 998-1006.
http://dx.doi.org/10.1056/NEJM200004063421402

[12]   M. C. Castro-Mujica and Y. Sullcahuamán-Allende, “Molecular Subtypes of PML/RARα in Patients with Acute Promyelocytic Leukemia,” Revista Peruana de Medicina Experimental y Salud Pública, Vol. 30, No. 1, 2013, pp. 37-40.
http://dx.doi.org/10.1590/S1726-46342013000100007

[13]   D. Douer, S. Santillana, L. Ramezani, C. Samanez, M. L. Slovak, M. S. Lee, et al., “Acute Promyelocytic Leukaemia in Patients Originating in Latin America Is Associated with an Increased Frequency of the bcr1 Subtype of the PML/RARalpha Fusion Gene,” British Journal of Haematology, Vol. 122, No. 4, 2003, pp. 563-570.
http://dx.doi.org/10.1046/j.1365-2141.2003.04480.x

[14]   K. Inokuchi, T. Inoue, A. Tojo, M. Futaki, K. Miyake, T. Yamada, et al., “A Possible Correlation between the Type of bcr-abl Hybrid Messenger RNA and Platelet Count in Philadelphia-Positive Chronic Myelogenous Leukemia,” Blood, Vol. 78, No.12, 1991, pp. 3125-3127.

[15]   C. Udomsakdi-Auewarakul, Y. U-Pratya, S. Boonmoh and S. Vatanavicharn, “Detection of Molecular Variants of BCR-ABL Gene in Bone Marrow and Blood of Patients with Chronic Myeloid Leukemia by Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR),” Journal of the Medical Association of Thailand, Vol. 83, No. 8, 2000, pp. 928-935.

[16]   C. Paz-y-Mino, R. Burgos, S. A. Morillo, J. C. Santos, B. F. Fiallo and P. E. Leone, “BCR-ABL Rearrangement Frequencies in CML and ALL in Ecuador, South America,” Cancer Genetics and Cytogenetics, Vol. 132, No. 1, 2002, pp. 65-67.

[17]   C. Paz-y-Mino, M. Arévalo and P. E. Leone, “B3/A3 Rearrangement in a Patient with Chronic Myeloid Leukemia,” Leukemia and Lymphoma, Vol. 44, No. 2, 2003, pp. 375-376.
http://dx.doi.org/10.1080/1042819021000029678

[18]   American Cancer Society, “Global Cancer Facts & Figures,” 2nd Edition, American Cancer Society, Atlanta, 2011.

[19]   D. Sugapriya, S. Preethi, P. Shanhi, N. Chandra, G. Jeyaraman, P. Sachdanandam, et al., “BCR-ABL Translocation in Pediatric Acute Lymphoblastic Leukemia in Southern India,” Indian Journal of Hematology & Blood Transfusion, Vol. 28, No. 1, 2012, pp. 37-41.
http://dx.doi.org/10.1007/s12288-011-0096-9

[20]   M. Zucca, J. Ugalde, F. S. Arteaga, G. Biggio, V. Flore, T. Nonne, et al., “Leukemia in Children and Youths of the Azuay Province, Ecuador: 2000-2010,” International Journal of Environmental Health Research, Vol. 23, No. 1, 2013, pp. 58-65.
http://dx.doi.org/10.1080/09603123.2012.699028

[21]   L. G. Shaffer, J. McGowan-Jordan and M. Schmid, “ISCN 2013: An International System for Human Cytogenetic Nomenclature (2013),” Karger, Basel, 2013.

[22]   J. M. Mejía-Aranguré, M. Bonilla, R. Lorenzana, S. Juárez-Ocana, G. de Reyes, M. L. Pérez-Saldivar, et al., “Incidence of Leukemias in Children from El Salvador and Mexico City between 1996 and 2000: Population-Based Data,” BMC Cancer, Vol. 5, 2005, p. 33.
http://dx.doi.org/10.1186/1471-2407-5-33

[23]   Ministerio De Salud, “Guía Clínica Leucemia Del Adulto,” Minsal, Santiago, 2007.

[24]   P. Chomczynski and N. Sacchi, “Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phe- nol-Chloroform Extraction,” Analytical Biochemistry, Vol. 162, No. 1, 1987, pp. 156-159.
http://dx.doi.org/10.1016/0003-2697(87)90021-2

[25]   J. J. M. van Dongen, E. A. Macintyre, J. A. Gabert, E. Delabesse, V. Rossi, G. Saglio, et al., “Standardized RT-PCR Analysis of Fusion Gene Transcripts from Chromosome Aberrations in Acute Leukemia for Detection of Minimal Residual Disease,” Leukemia, Vol. 13, No. 12, 1999, pp. 1901-1928.
http://dx.doi.org/10.1038/sj.leu.2401592

[26]   P. E. Leone, J. C. Pérez, S. A. Morillo and C. Paz-y-Mino, “Low Incidence of Follicular Lymphoma and t(14;18) (q32;q21) by Polymerase Chain Reaction Analysis: Observations on Ecuadorian Patients,” Cancer Genetics and Cytogenetics, Vol. 137, No. 1, 2002, pp. 72-74.
http://dx.doi.org/10.1016/S0165-4608(02)00542-3

[27]   C. J. Harrison, A. Cuneo, R. Clark, B. Johansson, M. Lafage-Pochitaloff, F. Mugneret, et al., “Ten Novel 11q23 Chromosomal Partner Sites. European 11q23 Workshop participants,” Leukemia, Vol. 12, No. 5, 1998, pp. 811-822. http://dx.doi.org/10.1038/sj.leu.2401017

[28]   J. V. Melo, “The Diversity of BCR-ABL Fusion Proteins and Their Relationship to Leukemia Phenotype,” Blood, Vol. 88, No. 7, 1996, pp. 2375-2384.

[29]   J. P. Meza-Espinoza, M. Gutiérrez-Angulo, A. Vázquez-Cárdenas, J. L. Delgado-Lamas, M. A. Esparza-Flores and J. R. González-García, “Prevalence of the BCR/ABL1 Transcripts in Mexican Patients with Chronic Myelogenous Leukemia,” Revista de Investigación Clínica, Vol. 59, No. 5, 2007, pp. 338-341.

[30]   C. H. Pui and W. E. Evans, “Acute Lymphoblastic Leukemia,” The New England Journal of Medicine, Vol. 339, No. 9, 1998, pp. 605-615.
http://dx.doi.org/10.1056/NEJM199808273390907

[31]   A. Biondi, A. Rambaldi, P. P. Pandolfi, V. Rossi, G. Giudici, M. Alcalay, et al., “Molecular Monitoring of the myl/Retinoic Acid Receptor-Alpha Fusion Gene in Acute Promyelocytic Leukemia by Polymerase Chain Reaction,” Blood, Vol. 80, No. 2, 1992, pp. 492-497.

[32]   F. Lo Coco, D. Diverio, B. Falini, A. Biondi, C. Nervi and P. G. Pelicci, “Genetic Diagnosis and Molecular Monitoring in the Management of Acute Promyelocytic Leukemia,” Blood, Vol. 94, No. 1, 1999, pp. 12-22.

[33]   D. Grimwade, H. Walker, F. Oliver, K. Wheatley, C. Harrison, G. Harrison, et al., “The Importance of Diagnostic Cytogenetics on Outcome in AML: Analysis of 1612 Patients Entered into the MRC AML 10 Trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties,” Blood, Vol. 92, No. 7, 1998, pp. 2322-2333.

[34]   P. P. Liu, A. Hajra, C. Wijmenga and F. S. Collins, “Molecular Pathogenesis of the Chromosome 16 Inversion in the M4Eo Subtype of Acute Myeloid Leukemia,” Blood, Vol. 85, No. 9, 1995, pp. 2289-2302.

[35]   C. Paz-y-Mino, J. C. Pérez, B. F. Fiallo and P. E. Leone, “A Polymorphism in the hMSH2 Gene [gIVS12-6T>C] Associated with Non-Hodkin Lymphomas,” Cancer Genetics and Cytogenetics, Vol. 133, No. 1, 2002, pp. 29-33.
http://dx.doi.org/10.1016/S0165-4608(01)00547-7

[36]   C. Paz-y-Mino, A. López-Cortés, M. J. Munoz, B. Castro, A. Cabrera and M. E. Sánchez, “Relationship of an hRAD54 Gene Polymorphism (2290 C/T) in an Ecuadorian Population with Chronic Myelogenous Leukemia,” Genetics and Molecular Biology, Vol. 33, No. 4, 2010, pp. 646-649.
http://dx.doi.org/10.1590/S1415-47572010005000095

[37]   C. Paz-y-Mino, J. C. Pérez, R. Burgos, M. V. Dávalos and P. E. Leone, “The ΔF508 Mutation in Ecuador, South America,” Human Mutation, Vol. 14, No. 4, 1999, pp. 348-350.
http://dx.doi.org/10.1002/(SICI)1098-1004(199910)14:4<348::AID-HUMU11>3.0.CO;2-8

[38]   P. E. Leone, M. Mendiola, J. Alonso, C. Paz-y-Mino and A. Pestana, “Implications of a RAD54L Polymorphism (2290C/T) in Human Meningiomas as a Risk Factor and/ or a Genetic Marker,” BMC Cancer, Vol. 3, 2003, p. 6.
http://dx.doi.org/10.1186/1471-2407-3-6

[39]   P. E. Leone, P. Giménez, J. C. Collantes and C. Paz-y- Mino, “Analysis of HFE Gene Mutations (C282Y, H63D, and S65C) in the Ecuadorian Population,” Annals of Hematology, Vol. 84, No. 2, 2005, pp. 103-105.
http://dx.doi.org/10.1007/s00277-004-0966-4

 
 
Top