An Optimal Double Inequality among the One-Parameter, Arithmetic and Geometric Means

Show more

References

[1] H. Y. Gao and W. J. Niu, “Sharp Inequalities Related to One-Parameter Mean and Gini Mean,” Journal of Mathematical Inequalities, Vol. 6, No. 4, 2012, pp. 545-555.

[2] W. S. Cheung and F. Qi, “Logarithmic Convexity of the One-Parameter Mean Values,” Taiwanese Journal of Mathematics, Vol. 11, No. 1, 2007, pp. 231-237.

[3] M. K. Wang, Y. F. Qiu and Y. M. Chu, “An Optimal Double Inequality among the One-Parameter, Arithmetic and Harmonic Means,” Revue D’Analyse Numerique de Theorie de L’approximation, Vol. 39, No. 2, 2012, pp. 169-175.

[4] H. N. Hu, G. Y. Tu and Y. M. Chu, “Optimal Bouds for the Seiffert Mean in Terms of One-Parameter Means,” Journal of Applied Mathematics, Vol. 2012, No. 1, 2012, Article ID: 917120.

[5] B. Y. Long and Y. M. Chu, “Optimal Inequalities for Generalized Logarithmic, Arithmetic and Geometric Mean,” Journal of Inequalities and Applications, Vol. 2010, No. 1, 2010, Article ID: 806825.

[6] N. G. Zheng, Z. H. Zhang and X. M. Zhang, Schur-Convexity of Two Types of One-Parameter Mean Values in Variables,” Journal of Inequalities and Applications, Vol. 2007, No. 1, 2007, Article ID: 78175.