[1] O. Pinto Jr., “Lightning in the Tropics: From a Source of Fire to a Monitoring System of Climate Changes,” Nova Science Publishers, Hauppauge, 2009.
[2] H. Le Treut, R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson and M. Prather, “Historical Overview of Climate Change,” In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, Eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, New York, 2007, pp. 95-127.
[3] H. Tost, P. Jockel and J. Lelieveld, “Lightning and Convection Parameterisations—Uncertainties in Global Modelling,” Atmospheric Chemistry Physics, Vol. 7, No. 17, 2007, pp. 4553-4568.
http://dx.doi.org/10.5194/acp-7-4553-2007
[4] E. R. Williams, “Global Circuit Response to Seasonal Variations in Global Surface Air Temperature,” Monthly Weather Review, Vol. 122, No. 8, 1994, pp. 1917-1929.
http://dx.doi.org/10.1175/1520-0493(1994)122<1917:GCRTSV>2.0.CO;2
[5] B. Ye, A. D. Del Genio and K. K.-W. Lo, “CAPE Variations in the Current Climate and in a Climate Change,” Journal of Climate, Vol. 11, No. 8, 1998, pp. 1997-2015.
http://dx.doi.org/10.1175/1520-0442-11.8.1997
[6] C. A. DeMott and D. A. Randall, “Observed Variations of Tropical Convective Available Potential Energy,” Journal of Geophysical Research, Vol. 109, No. 2, 2004, pp. 438-453.
[7] A. Gettelman, D. J. Seidel, M. C. Wheeler and R. J. Ross, “Multidecadal Trends in Tropical Convective Available Potential Energy,” Journal of Geophysical Research, Vol. 107, No. 21, 2002, pp. 4606-4613.
http://dx.doi.org/10.1029/2001JD001082
[8] K. Riemann-Campe, K. Fraedricha and F. Lunkeit, “Global Climatology of Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in ERA-40 reanalysis,” Atmospheric Research, Vol. 93, No. 1-3, 2009, pp. 534-545.
http://dx.doi.org/10.1016/j.atmosres.2008.09.037
[9] B. Stone, “Urban and Rural Temperature Trends in Proximity to Large US Cities: 1951-2000,” International Journal of Climatology, Vol. 27, No. 13, 2007, pp. 1801-1807.
http://dx.doi.org/10.1002/joc.1555
[10] F. Fujibe, “Detection of Urban Warming in Recent Temperature Trends in Japan,” International Journal of Climatology, Vol. 29, No. 12, 2009, pp. 1811-1822.
http://dx.doi.org/10.1002/joc.1822
[11] T. Oke, “The Energetic Basis of the Urban Heat Island,” Quarterly Journal of the Royal Meteorological Society, Vol. 108, No. 455, 1982, pp. 1-24.
[12] A. J. Arnfield, “Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island,” International Journal of Climatology, Vol. 23, No. 1, 2003, pp. 1-24.
http://dx.doi.org/10.1002/joc.859
[13] W. T. L. Chow and M. Roth, “Temporal Dynamics of the Urban Heat Island of Singapore,” International Journal of Climatology, Vol. 26, No. 15, 2006, pp. 2243-2260.
http://dx.doi.org/10.1002/joc.1364
[14] I. D. Stewart, “A Systematic Review and Scientific Critique of Methodology in Modern Urban Heat Island Literature,” International Journal of Climatology, Vol. 31, No. 2, 2011, pp. 200-217.
http://dx.doi.org/10.1002/joc.2141
[15] I. D. Stewart and T. R. Oke, “Local Climate Zones for Urban Temperature Studies,” Bulletin American Meteorological Society, Vol. 93, No. 12, 2012, pp. 1879-1900.
http://dx.doi.org/10.1175/BAMS-D-11-00019.1
[16] M. P. McCarthy, M. J. Best and R. A. Betts, “Climate Change in Cities Due to Global Warming and Urban Effects,” Geophysical Research Letter, Vol. 37, No. 9, 2010, pp. 1-5. http://dx.doi.org/10.1029/2010GL042845
[17] G. Martine, “State of World Population 2007, Unleashing the Potential of Urban Growth,” UNFPA Report, United Nations Population Fund, New York, 2007.
[18] D. O. Souza and R. C. S. Alvalá, “Observational Evidence of the Urban Heat Island of Manaus City, Brazil,” Meteorological Applications, 2012, in Press.
http://dx.doi.org/10.1002/met.1340
[19] F. W. S. Correia and R. A. F. Souza, “Urban Heat Island in the City of Manaus: An Observational and Numeric Study,” University of Amazonas State (UEA) Report, Internal Report, Manaus, 2012 (in Portuguese).
[20] M. L. Hutchins, R. H. Holzworth, J. B. Brundell and C. J. Rodger, “Relative Detection Efficiency of the World Wide Lightning Location Network,” Radio Science, Vol. 47, No. 6, 2012, pp. 1-24.
http://dx.doi.org/10.1029/2012RS005049
[21] H. J. Christian, R. J. Blakeslee, S. J. Goodman, D. M. Mach, M. F. Stewart, D. E. Buechler, W. J. Koshak, J. M. Hall, W. L. Boeck, K. T. Driscoll and D. J. Boccippio, “The Lightning Imaging Sensor,” Proceedings of the 11th International Conference on Atmospheric Electricity (ICAE), Guntersville, 23 June 1999, pp. 746-749.
[22] N. E. Westcott, “Summertime Cloud-to-Ground Lightning Activity around Major Midwestern Urban Areas,” Journal of Applied Meteorology, Vol. 34, No. 7, 1995, pp. 1633-1642. http://dx.doi.org/10.1175/1520-0450-34.7.1633
[23] R. E. Orville, G. R. Huffines, J. Nielsen-Gammon, R. Zhang, B. Ely, S. Steiger, S. Phillips, S. Allen and W. Read, “Enhancement of Cloud-to-Ground Lightning over Houston, Texas,” Geophysical Research Letter, Vol. 28, No. 13, 2001, pp. 2597-2600.
http://dx.doi.org/10.1029/2001GL012990
[24] S. Steiger, R. E. Orville and G. Huffines, “Cloud-to-Ground Lightning Characteristics over Houston, Texas: 1989-2000,” Journal of Geophysical Research, Vol. 107, No. 11, 2002, pp. 4117-4129.
http://dx.doi.org/10.1029/2001JD001142
[25] K. P. Naccarato, O. Pinto Jr. and I. R. C. A. Pinto, “Evidence of Thermal and Aerosol Effects on the Cloud-to-Ground Lightning Density and Polarity over Large Urban Areas of Southeastern Brazil,” Geophysical Research Letter, Vol. 30, No. 13, 2003, pp. 1674-1677.
http://dx.doi.org/10.1029/2003GL017496
[26] I. R. C. A. Pinto, O. Pinto Jr., M. A. S. S. Gomes and N. J. Ferreira, “Urban Effect on the Characteristics of Cloud-to-Ground Lightning over Belo Horizonte-Brazil,” Annales Geophysicae, Vol. 22, No. 2, 2004, pp. 697-700.
http://dx.doi.org/10.5194/angeo-22-697-2004
[27] S. K. Kar, Y.-A. Liou and K.-J. Há, “Characteristics of Cloud-to-Ground Lightning Activity over Seoul, South Korea in Relation to an Urban Effect,” Annales Geophysicae, Vol. 25, No. 10, 2007, pp. 2113-2118.
http://dx.doi.org/10.5194/angeo-25-2113-2007
[28] O. Pinto Jr. and I. R. C. A. Pinto, “On the Sensitivity of Cloud-to-Ground Lightning Activity to Surface Air Temperature Changes at Different Time Scales in Sao Paulo, Brazil,” Journal of Geophysical Research, Vol. 113, No. 20, 2008, pp. 22334-22343.
[29] O. Pinto Jr., I. R. C. A. Pinto and M. A. S. Ferro, “A Study of the Long-Term Variability of Thunderstorm Days in Southeast Brazil,” Journal of Geophysical Research, Vol. 118, No. 5, 2013, pp. 1-16.
[30] E. R. Williams and G. Sátori, “Lightning, Thermodynamic and Hydrological Comparison of the Two Tropical Continental Chimneys,” Journal of Atmospheric and Solar Terrestrial Physics, Vol. 66, No. 13-14, 2004, pp. 1213-1231. http://dx.doi.org/10.1016/j.jastp.2004.05.015
[31] S. J. Goodman, R. J. Blakeslee, W. J. Koshak, D. Mach, J. Bailey, D. Buechler, L. Carey, C. Schultz, M. Bateman, E. McCaul Jr. and G. Stano, “The GOES-R Geostationary Lightning Mapper (GLM),” Atmospheric Research, Vol. 125-126, 2013, pp. 34-49.
http://dx.doi.org/10.1016/j.atmosres.2013.01.006