[1] Gandhi, N.S. and Mancera, R.L. (2008) The structure of glycosaminoglycans and their interactions with proteins. Chemical Biology & Drug Design, 72, 455-482. http://dx.doi.org/10.1111/j.1747-0285.2008.00741.x
[2] Schaefer, L. and Schaefer, R.M. (2010) Proteoglycans: From structural compounds to signaling molecules. Cell and Tissue Research, 339, 237-246. http://dx.doi.org/10.1007/s00441-009-0821-y
[3] Stern, R. (2008) Association between cancer and “acid mucopolysaccharides”: An old concept comes of age, finally. Seminars in Cancer Biology, 18, 238-243. http://dx.doi.org/10.1016/j.semcancer.2008.03.014
[4] Meyer, K. and Palmer, J.W. (1934) The polysaccharide of the vitreous humor. Journal of Biological Chemistry, 107, 629-634.
[5] Boas, N.F. (1949) Isolation of hyaluronic acid from the cock’s comb. Journal of Biological Chemistry, 181, 573-575.
[6] Meyer, K. and Chaffee, E. (1941) The mucopolysaccharides of skin. Journal of Biological Chemistry, 138, 491-499.
[7] Chain, E. and Duthie, E.S. (1940) Identity of hyaluronidase and spreading factor. British Journal of Experimental Pathology, 21, 324-338.
[8] Kendall, F.E., Heidelberger, M. and Dawson, M.H. (1937) A serologically inactive polysaccharide elaborated by mucoid strains of group A hemolytic streptococcus. Journal of Biological Chemistry, 118, 61-69.
[9] Carter, G.R. and Annau, E. (1953) Isolation of capsular polysaccharides for colonial variants of Pasteurella multocida. American Journal of Veterinary Research, 14, 475-478.
[10] MacLennan, A.P. (1956) The production of capsules, hyaluronic acid and hyaluronidase by 25 strains of group C streptococci. Journal of General Microbiology, 15, 485-491. http://dx.doi.org/10.1099/00221287-15-3-485
[11] Thonard, J.C., Migliore, S.A. and Blustein, R. (1964) Isolation of hyaluronic acid from broth cultures of streptococci. Journal of Biological Chemistry, 239, 726-728.
[12] Armstrong, D.C. and Johns, M.R. (1997) Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Applied & Environmental Microbiology, 63, 2759-2764.
[13] Widner, B., et al. (2005) Hyaluronic acid production in Bacillus subtilis. Applied & Environmental Microbiology, 71, 3747-3752. http://dx.doi.org/10.1128/AEM.71.7.3747-3752.2005
[14] DeAngelis, P.L., Papaconstantinou, J. and Weigel, P.H. (1993) Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. Journal of Biological Chemistry, 268, 14568-14571.
[15] Chien, L.-J. and Lee, C.-K. (2007) Hyaluronic acid production by recombinant Lactococcus lactis. Applied Microbiology and Biotechnology, 77, 339-346. http://dx.doi.org/10.1007/s00253-007-1153-z
[16] Yu, H. and Stephanopoulos, G. (2008) Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metabolic Engineering, 10, 24-32. http://dx.doi.org/10.1016/j.ymben.2007.09.001
[17] Mao, Z. and Chen, R.R. (2007) Recombinant synthesis of hyaluronan by agrobacterium sp. Biotechnology Progress, 23, 1038-1042.
[18] Mao, Z., Shin, H.-D. and Chen, R. (2009) A recombinant E. coli bioprocess for hyaluronan synthesis. Applied Microbiology and Biotechnology, 84, 63-69. http://dx.doi.org/10.1007/s00253-009-1963-2
[19] Johns, M.R., Goh, L.-T. and Oeggerli, A. (1994) Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus. Biotechnology Letters, 16, 507-512. http://dx.doi.org/10.1007/BF01023334
[20] Huang, W.-C., Chen, S.-J. and Chen, T.-L. (2006) The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochemical Engineering Journal, 32, 239-243. http://dx.doi.org/10.1016/j.bej.2006.10.011
[21] Kim, J.-H., et al. (1996) Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzyme and Microbial Technology, 19, 440-445. http://dx.doi.org/10.1016/S0141-0229(96)00019-1
[22] Chen, W.Y., et al. (2009) Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. Journal of Biological Chemistry, 284, 18007-18014. http://dx.doi.org/10.1074/jbc.M109.011999
[23] Krupa, J.C., et al. (2007) Quantitative continuous assay for hyaluronan synthase. Analytical Biochemistry, 361, 218-225. http://dx.doi.org/10.1016/j.ab.2006.11.011
[24] Pummill, P.E., Achyuthan, A.M. and DeAngelis, P.L. (1998) Enzymological characterization of recombinant Xenopus DG42, a vertebrate hyaluronan synthase. Journal of Biological Chemistry, 273, 4976-4981. http://dx.doi.org/10.1074/jbc.273.9.4976
[25] Itano, N., et al. (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. Journal of Biological Chemistry, 274, 25085-25092. http://dx.doi.org/10.1074/jbc.274.35.25085
[26] Tlapak-Simmons, V.L., et al. (1999) Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. Journal of Biological Chemistry, 274, 4246-4253. http://dx.doi.org/10.1074/jbc.274.7.4246
[27] DeAngelis, P.L. (1999) Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. Journal of Biological Chemistry, 274, 26557-26562. http://dx.doi.org/10.1074/jbc.274.37.26557
[28] Jing, W. and DeAngelis, P.L. (2004) Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. Journal of Biological Chemistry, 279, 42345- 42349. http://dx.doi.org/10.1074/jbc.M402744200
[29] Osawa, T., et al. (2009) Crystal structure of chondroitin polymerase from Escherichia coli K4. Biochemical and Biophysical Research Communications, 378, 10-14. http://dx.doi.org/10.1016/j.bbrc.2008.08.121
[30] Jing, W. and DeAngelis, P.L. (2000) Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: Two active sites exist in one polypeptide. Glycobiology, 10, 883-889. http://dx.doi.org/10.1093/glycob/10.9.883
[31] Fitzgerald, D.K., et al. (1970) Enzymic assay for galactosyl transferase activity of lactose synthetase and [alpha]lactalbumin in purified and crude systems. Analytical Biochemistry, 36, 43-61. http://dx.doi.org/10.1016/0003-2697(70)90330-1
[32] Gosselin, S., et al. (1994) A continuous spectrophotometric assay for glycosyltransferases. Analytical Biochemistry, 220, 92-97. http://dx.doi.org/10.1006/abio.1994.1303
[33] Kooy, F.K., et al. (2009) Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis. Analytical Biochemistry, 384, 329-336. http://dx.doi.org/10.1016/j.ab.2008.09.042
[34] Cornish-Bowden, A. (1995) Fundamentals of enzyme kinetics. Portland Press Ltd., London.
[35] Cook, P.F. and Cleland, W.W. (2007) Enzyme kinetics and mechanism. Garland Science, London.
[36] De Levie, R. (2004) Macros for least-squares & for the propagation of imprecision, in advanced excel for scientific data analysis. Oxford University Press, New York.
[37] Van Boekel, M.A.J.S. (2010) Kinetic modeling of reactions in foods. CRC Press, Boca Raton.
[38] Motulsky, H. and Christopoulos, A. (2003) Fitting models to biological data using linear and nonlinear regression: A practical guide to curve fitting. GraphPad Software Inc., San Diego.
[39] Williams, K.J., Halkes, K.M., Kamerling, J.P. and DeAngelis, P.L. (2006) Critical elements of oligosaccharide acceptor substrates for the Pasteurella multocida hyaluronan synthase. Journal of Biological Chemistry, 281, 5391- 5397. http://dx.doi.org/10.1074/jbc.M510439200
[40] Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystalography, 26, 283-291. http://dx.doi.org/10.1107/S0021889892009944
[41] Sippl, M.J. (1993) Recognition of errors in three-dimensional structures of proteins. Proteins: Structure, Function, and Genetics, 17, 355-362. http://dx.doi.org/10.1002/prot.340170404
[42] Trott, O. and Olson, A.J. (2009) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455-461.
[43] Holm, L. and Sander, C. (1996) Mapping the protein universe. Science, 273, 595-602. http://dx.doi.org/10.1126/science.273.5275.595
[44] DeAngelis, P.L. (1996) Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase. Biochemistry, 35, 9768-9771. http://dx.doi.org/10.1021/bi960154k
[45] Tlapak-Simmons, V.L., Baron, C.A. and Weigel, P.H. (2004) Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry, 43, 9234-9242. http://dx.doi.org/10.1021/bi049468v
[46] Yoshida, M., Itano, N., Yamada, Y. and Kimata, K. (2000) In Vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 Gene and characterization of amino acid residues essential for the activity. Journal of Biological Chemistry, 275, 497-506. http://dx.doi.org/10.1074/jbc.275.1.497
[47] Kumari, K. and Weigel, P.H. (1997) Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from Group C Streptococcus equisimilis. Journal of Biological Chemistry, 272, 32539-32546. http://dx.doi.org/10.1074/jbc.272.51.32539
[48] Eisenthal, R., Danson, M.J. and Hough, D.W. (2007) Catalytic efficiency and kcat/KM: A useful comparator? Trends in Biotechnology, 25, 247-249. http://dx.doi.org/10.1016/j.tibtech.2007.03.010
[49] Breton, C., Snajdrová, L., Jeanneau, C., Koca, J. and Imberty, A. (2006) Structures and mechanisms of glycosyl-transferases. Glycobiology, 16, 29R-37R. http://dx.doi.org/10.1093/glycob/cwj016
[50] Fritz, T.A., Raman, J. and Tabak, L.A. (2006) Dynamic association between the catalytic and lectin domains of human UDP-GalNAc: Polypeptide a-N-acetylgalactosami- nyltransferase-2. Journal of Biological Chemistry, 281, 8613-8619. http://dx.doi.org/10.1074/jbc.M513590200
[51] Pedersen, L.C., Tsuchida, K., Kitagawa, H., Sugahara, K., Darden, T.A. and Negishi, M. (2000) Heparan/Chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. Journal of Biological Chemistry, 275, 34580-34585. http://dx.doi.org/10.1074/jbc.M007399200
[52] Kakuda, S., Shiba, T., Ishiguro, M., Tagawa, H., Oka, S., Kajihara, Y., Kawasaki, T., Wakatsuki, S. and Kato, R. (2004) Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1. Journal of Biological Chemistry, 279, 22693- 22703. http://dx.doi.org/10.1074/jbc.M400622200
[53] Ramasamy, V., Ramakrishnana, B., Boeggeman, E., Ratner, D.M., Seeberger, P.H. and Qasba, P.K. (2005) Oligosaccharide preferences of β1,4-galactosyltransferase-I: Crystal structures of Met340His mutant of human β1,4-galactosyltransferase-I with a pentasaccharide and trisaccharides of the Nglycan moiety. Journal of Molecular Biology, 353, 53-67. http://dx.doi.org/10.1016/j.jmb.2005.07.050
[54] Pedersen, L.C., Dong, J., Taniguchi, F., Kitagawa, H., Krahn, J.M., Pedersen, L.G., Sugahara, K. and Negishi, M. (2003) Crystal structure of an 1,4-N-acetylhexosami- nyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. Journal of Biological Chemistry, 278, 14420-14428. http://dx.doi.org/10.1074/jbc.M210532200
[55] Zhang, Y., Swaminathan, G.J., Deshpande, A., Boix, E., Natesh, R., Xie, Z.H., Acharya, K.R. and Brew, K. (2003) Roles of individual enzyme—Substrate interactions by α-1,3-galactosyltransferase in catalysis and specificity. Biochemistry, 42, 13512-13521. http://dx.doi.org/10.1021/bi035430r
[56] Patenaude, S.I., Seto, N.O., Borisova, S.N., Szpacenko, A., Marcus, S.L., Palcic, M.M. and Evans, S.V. (2002) The structural basis for specificity in human ABO(H) blood group biosynthesis. Nature Structural Biology, 9, 685-690. http://dx.doi.org/10.1038/nsb832
[57] Persson, K., Ly, H.D., Dieckelmann, M., Wakarchuk, W.W., Withers, S.G. and Strynadka, N.C.J. (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nature Structural Biology, 8, 166-175. http://dx.doi.org/10.1038/84168
[58] Breton, C., Bettler, E., Joziasse, D.H., Geremia, R.A. and Imberty, A. (1998) Sequence-Function relationships of prokaryotic and eukaryotic galactosyltransferases. Journal of Biochemistry, 123, 1000-1009. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022035
[59] Tarbouriech, N., Charnock, S.J. and Davies, G.J. (2001) Three-Dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: A comparison with related NDP-sugar glycosyltransferases. Journal of Molecular Biology, 314, 655-661. http://dx.doi.org/10.1006/jmbi.2001.5159
[60] Jing, W. and DeAngelis, P.L. (2003) Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology, 13, 661-671. http://dx.doi.org/10.1093/glycob/cwg085
[61] Pedersen, L.C., Darden, T.A. and Negishi. M. (2002) Crystal structure of b1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA. Journal of Biological Chemistry, 277, 21869-21873. http://dx.doi.org/10.1074/jbc.M112343200
[62] Gastinel, L.N., Bignon, C., Misra, A.K., Hindsgaul, O., Shaper, J.H. and Joziass, D.H. (2001), Bovine a1,3-galacto-syltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases. EMBO Journal, 20, 638-649. http://dx.doi.org/10.1093/emboj/20.4.638
[63] Ramakrishnan, B., Boeggeman, E. and Qasba, P.K. (2004) Effect of the Met344His mutation on the conformational dynamics of bovine b-1,4-galactosyltransferase: Crystal structure of the Met344His mutant in complex with chitobiose. Biochemistry, 43, 12513-12522.
[64] Negishi, M., Donga, J., Dardenb, T.A., Pedersenb, L.G. and Pedersen, L.C. (2003) Glucosaminylglycan biosynthesis: What we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. Biochemical and Biophysical Research Communications, 303, 393-398. http://dx.doi.org/10.1016/S0006-291X(03)00356-5
[65] Fondeur-Gelinotte, M., et al. (2007) Molecular basis for acceptor substrate specificity of the human β1,3-glucuronosyltransferases GlcAT-I and GlcAT-P involved in glycosaminoglycan and HNK-1 carbohydrate epitope biosynthesis, respectively. Glycobiology, 17, 857-867. http://dx.doi.org/10.1093/glycob/cwm055
[66] Zhang, Y., Deshpande, A., Xie, Z.H., Natesh, R., Acharya, K.R. and Brew, K. (2004) Roles of active site tryptophans in substrate binding and catalysis by α-1,3 galactosyl- transferase. Glycobiology, 14, 1295-1302. http://dx.doi.org/10.1093/glycob/cwh119
[67] Mulders, K.J.M. and Beeftink, H.H. (2013) Chain length distribution and kinetic characteristics of an enzymaticcally produced polymer. e-Polymers, 24, 1-12.