[1] Domi?nguez De Mari?a, P., Carboni-Oerlemans, C., Tuin, B., Bargeman, G., Van Der Meer, A. and Van Gemert, R. (2005) Biotechnological applications of Candida antarctica lipase A: State-of-the-art. Journal of Molecular Catalysis B: Enzymatic, 37, 36-46.
[2] Jaeger, K.E. and Reetz, M.T. (1998) Microbial lipases form versatile tools for biotechnology. Trends in Biotech- nology, 16, 396-403. http://dx.doi.org/10.1016/S0167-7799(98)01195-0
[3] Anderson, E.M., Larsson, K.M. and Kirk, O. (1998) One biocatalyst—Many applications: The use of Candida antarctica Blipase in organic synthesis. Biocatalysis and Biotransformation, 16, 181-204. http://dx.doi.org/10.3109/10242429809003198
[4] Akoh, C.C., Chang, S.-W., Lee, G.-C. and Shaw, J.-F. (2008) Bio-catalysis for the production of industrial products and functional foods from rice and other agricultural produce. Journal of Agricultural Food Chemistry, 56, 10445-10451. http://dx.doi.org/10.1021/jf801928e
[5] Berger, M., Laumen, K. and Schneider, M.P. (1992) Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1,3-sndiacylglycerols. Journal of the American Oil Chemists’ Society, 69, 955- 960.
[6] Chulalaksananukul, W., Condoret, J.-S. and Combes, D. (1993) Geranyl acetate synthesis by lipase-catalyzed- transesterification in supercritical carbon dioxide. Enzyme and Microbial Technology, 15, 691-698. http://dx.doi.org/10.1016/0141-0229(93)90071-9
[7] SzczesnaAntczak, M., Kubiak, A., Antczak, T. and Bielecki, S. (2009) Enzymatic biodiesel synthesis—Key factors affecting efficiency of the process. Renewable Energy, 34, 1185-1194. http://dx.doi.org/10.1016/j.renene.2008.11.013
[8] Holm, H.C. and Cowan, D. (2008) The evolution of enzymatic inter-esterification in the oils and fats industry. European Journal of Lipid Science and Technology, 110, 679-691. http://dx.doi.org/10.1002/ejlt.200800100
[9] Brenna, E., Fuganti, C. and Serra, S. (2008) Applications of biocatalysis in fragrance chemistry: The enantiomers of α-, β-, and γ-irones. Chemical Society Reviews, 37, 2443-2451. http://dx.doi.org/10.1039/b801557k
[10] Woodley, J.M. (2008) New opportunities for biocatalysis: Making pharmaceutical processes greener. Trends in Biotechnology, 26, 321-327. http://dx.doi.org/10.1016/j.tibtech.2008.03.004
[11] Iyer, P.V. and Ananthanarayan, L. (2008) Enzyme stability and stabili-zation—Aqueous and non-aqueous environment. Process Biochemistry, 43, 1019-1032. http://dx.doi.org/10.1016/j.procbio.2008.06.004
[12] O?’Fa?ga?in, C. (2003) Enzyme stabilization—Recent experimental progress. Enzyme and Microbial Technology, 33, 137-149.
[13] Shaw, A. and Bott, R. (1996) Engineering enzymes for stability. Current Opinion in Structural Biology, 6, 546-550. http://dx.doi.org/10.1016/S0959-440X(96)80122-9
[14] Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M. and Fernandez-Lafuente, R. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451-1463. http://dx.doi.org/10.1016/j.enzmictec.2007.01.018
[15] Illanes, A. (1999) Stability of biocatalysts. Electronic Journal of Biotechnology, 2, 15-30. http://dx.doi.org/10.2225/vol2-issue1-fulltext-2
[16] Gianfreda, L. and Scarfi, M.R. (1991) Enzyme stabilization: State of the art. Molecular and Cellular Biochemistry, 100, 97-128. http://dx.doi.org/10.1007/BF00234161
[17] Katchalski-Katzir, E. (1993) Immobilized enzymes—Learning from past successes and failures. Trends in Biotechnology, 11, 471-478. http://dx.doi.org/10.1016/0167-7799(93)90080-S
[18] Hartmeier, W. (1985) Immobilized biocatalysts—From simple to complex systems. Trends in Biotechnology, 3, 149-153. http://dx.doi.org/10.1016/0167-7799(85)90104-0
[19] Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L. and Menge, U. (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature, 343, 767-770. http://dx.doi.org/10.1038/343767a0
[20] Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A. and Thim, L. (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351, 491-494. http://dx.doi.org/10.1038/351491a0
[21] Derewenda, Z.S., Derewenda, U. and Dodson, G.G. (1992) The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 ? resolution. Journal of Molecular Biology, 227, 818-839.