NM  Vol.4 No.4 , December 2013
Neurorestorative Effects of Constraint-Induced Movement Therapy after Stroke: An Integrative Review
Abstract: Stroke has been considered as one of the main causes of death and of motor and cognitive sequels. Especially, many patients with upper limb hemiparesis improved their motor action and showed meaningful cortical changes after treatment with constraint-induced movement therapy. Therefore, this review aims to verify the literature about neuroimaging and behavioral evidences in the cortical reorganization through the use of the constraint-induced movement therapy. So, we conducted the literature research in indexed journals from many databases like Pubmed, Medline, Cochrane Database, Lilacs and Scielo. We concluded that the behavioral and neuroimaging studies using traditional and modified constraint-induced movement therapy promote cortical reorganization.
Cite this paper: M. Lucas, P. Ribeiro, M. Cagy, S. Teixeira, F. Chaves, D. Carvalho, C. Peressutti, S. Machado, J. Bittencourt, B. Velasques and R. Piedade, "Neurorestorative Effects of Constraint-Induced Movement Therapy after Stroke: An Integrative Review," Neuroscience and Medicine, Vol. 4 No. 4, 2013, pp. 253-262. doi: 10.4236/nm.2013.44036.

[1]   Y. Shi, H. J. Tian, K. H. Yang and Y. Zhao, “Modified Constraint-Induced Movement Therapy versus Traditional Rehabilitation in Patients with Upper-Extremity Dysfunction after Stroke: A Systematic Review and Meta-Analysis,” Archives of Physical Medicine and Rehabilitation, Vol. 92, No. 6, 2011, pp. 972-982.

[2]   P. M. Rossini and G. D. Forno, “Neuronal Post-Stroke Plasticity in the Adult,” Restorative Neurology and Neuroscience, Vol. 22, No. 3-5, 2004, pp. 193-206.

[3]   S. J. Page and P. Levine, “Modified Constraint-Induced Therapy in Patients with Chronic Stroke Exhibiting Minimal Movement Ability in the Affected Arm,” Physical Therapy, Vol. 87, No. 7, 2007, pp. 872-878.

[4]   A. Sterr, T. Elbert, I. Berthold, S. Kolbel, B. Rockstroh and E. Taub, “Longer versus Shorter Daily Constraint-Induced Movement Therapy of Chronic Hemiparesis: An Exploratory Study,” Archives of Physical Medicine and Rehabilitation, Vol. 83, No. 10, 2002, pp. 1374-1377.

[5]   E. Taub and G. Uswatte, “Contraint-Induced Movement Therapy: Bridging from the Primate Laboratory to the Stroke Rehabilitation Laboratory,” Journal of Rehabilitation Medicine, Vol. 41, 2003, pp. 34-40.

[6]   W. H. R. Miltner H. Bauder, H. Sommer, M. Dettmers and E. Taub, “Effects of Constraint-Induced Movement Therapy on Patients with Chronic Motor Deficits after Stroke: A Replication,” Stroke, Vol. 30, No. 3, 1999, pp. 586-592.

[7]   J. Liepert, H. Bauder, H. R. Wolfgang, W. H. Miltner, E. Taub and C. Weiller, “Treatment-Induced Cortical Reorganization after Stroke in Humans,” Stroke, Vol. 31, No. 6, 2000, pp. 1210-1216.

[8]   C. Y. Wu, L. L. Chuang, K. C. Lin, H. C. Chen and P. K. Tsay, “Randomized Trial of Distributed Constraint-Induced Therapy versus Bilateral Arm Training for the Rehabilitation of Upper-Limb Motor Control and Function after Stroke,” Neurorehabilitation and Neural Repair, Vol. 25, No. 2, 2011, pp. 130-139.

[9]   S. W. Ward, “Plasticity and the Functional Reorganization of the Human Brain,” International Journal of Psychophysiology, Vol. 58, No. 2-3, 2005, pp. 158-161.

[10]   C. E. Naylor and E. Bower, “Modified Constraint Induced Movement Therapy for Young Children with Hemiplegic Cerebral Palsy: A Pilot Study,” Developmental Medicine & Child Neurology, Vol. 47, No. 6, 2005, pp. 365-369.

[11]   F. Pulvermüller, B. Neininger, T. Elbert, B. Mohr, B. Rockstroh, P. Koebbel and E. Taub, “Constraint-Induced Therapy of Chronic Aphasia after Stroke,” Stroke, Vol. 32, No. 7, 2001, pp. 1621-1626.

[12]   E. Taub, N. E. Miller, T. A. Novack, E. W. Cook, W. C. Fleming, C. S. Nepomuceno, J. S. Connell and J. E. Crago, “Technique to Improve Chronic Motor Deficit after Stroke,” Archives of Physical Medicine and Rehabilitation, Vol. 74, No. 4, 1993, pp. 347-354.

[13]   A. M. Gordon, J. S. Charles and S. L. Wolf, “Methods of Constraint-Induced Movement Therapy for Children with Hemiplegic Cerebral Palsy: Development of a Child-Friendly Intervention for Improving Upper-Extremity Function,” Archives of Physical Medicine and Rehabilitation, Vol. 74, No. 4, 2005, pp. 837-844.

[14]   D. M. Morris, E. Taub and V. W. Mark, “Contraint-Induced Movement Therapy. Characterizing the Intervention Protocol,” Europa Medicophysica, Vol. 42, No. 3, 2006, pp. 257-268.

[15]   E. Taub, S. L. Ramey, S. DeLuca and K. Echols, “Efficacy of Constraint-Induced Movement Therapy for Children with Cerebral Palsy with Asymmetric Motor Impairment,” Pediatrics, Vol. 113, No. 2, 2004, pp. 305-312.

[16]   S. J. Page, S. Sisto, P. Levine, M. V. Johnston and M. Hughes, “Modified Contraint Induced Therapy: A Randomized Feasibility and Efficacy Study,” Journal of Rehabilitation Research & Development, Vol. 38, No. 5, 2001, pp. 583-590.

[17]   J. P. Szaflarski, S. J. Page, B. M. Kissela, J. H. Lee, P. Levine and S. M. Strakowski, “Cortical Reorganization Following Modified Constraint-Induced Movement Therapy: A Study of 4 Patients with Chronic Stroke,” Archives of Physical Medicine and Rehabilitation, Vol. 87, No. 8, 2006, pp. 1052-1058.

[18]   S. J. Page, S. Sisto, P. Levine and R. E. McGrath, “Efficacy of Modified Constraint-Induced Movement Therapy in Chronic Stroke: A Single-Blinded Randomized Controlled Trial,” Archives of Physical Medicine and Rehabilitation, Vol. 85, No. 1, 2004, pp. 14-18.

[19]   M. S. George, Z. Nahas, S. H. Lisanby, T. Schlaepfer, F. A. Kozel and B. D. Greenberg, “Transcranial Magnetic Stimulation,” Neurosurgery Clinics of North America, Vol. 14, No. 2, 2003, pp. 283-301.

[20]   K. Wendel, O. Väisänen, J. Malmivuo, N. G. Gencer, B. Vanrumste, P. Durka, R. Magjarevic, S. Supek, L. M. Pascu, H. Fontenelle and R. G. P. Menendez, “EEG/MEG Source Imaging: Methods, Challenges, and Open Issues,” Computational Intelligence and Neuroscience, Vol. 2009, No. 12, 2009, pp. 1-12.

[21]   V. R. Badrakalimuthu, R. Swamiraju and H. Waal, “EEG in Psychiatric Practice: To Do or Not To Do?” Advances in Psychiatric Treatment, Vol. 17, No. 2, 2011, pp. 114-121.

[22]   B. Draganski, C. Gases, V. Busch, G. Schuierer, U. Bogdahn and A. May, “Neuroplasticity: Changes in Grey Matter Induced by Training,” Nature, Vol. 427, 2004, pp. 311-312.

[23]   T. M. Lau, J. T. Gwin, K. G. McDowell and D. P. Ferris, “Weighted Phase Lag Index Stability as an Artifact Resistant Measure to Detect Cognitive EEG Activity during Locomotion,” Journal of NeuroEngineering and Rehabilitation, Vol. 9, No. 42, 2012, p. 47.

[24]   J. R. Hughes and E. R. John, “Conventional and Quantitative Electroencephalography and Psichiatry,” The Journal of Neuropsychiatry and Clinical Neurosciences, Vol. 11, No. 2, 1999, pp. 190-208.

[25]   I. M. Tarkka, M. Kononen, K. Pitka, J. Sivenius and E. Mervaala, “Alterations in Cortical Excitability in Chronic Stroke after Constraint-Induced Movement Therapy,” Neurological Research, Vol. 30, No. 5, 2008, pp. 504-510.

[26]   A. T. Barker, R. Jalinous and I. L. Freeston, “Noinvasive Magnetic Stimulation of Human Motor Cortex,” Lancet, Vol. 1, No. 8437, 1985, pp. 1106-1107.

[27]   M. Hallett. “Transcranial Magnetic Stimulation and the Human Brain,” Nature, Vol. 406, No. 6792, 2000, pp. 147-150.

[28]   S. Machado, B. Velasques, M. Cunha, L. Basile, H. Budde, M. Cagy, R. Piedade and P. Ribeiro. “Aplicações Terapêuticas da Estimulação Cerebral por Corrente Contínua na Neuroreabilitação Clínica,” Revista Neurociências, Vol. 17, No. 3, 2009, pp. 298-300.

[29]   F. Fregni, S. C. Schachter and A. Pacual-Leone, “Transcranial Magnetic Stimulation Treatment for Epipepsy: Can It Also Improve Depression and Vice Versa?” Epilepsy & Behavior, Vol. 7, No. 2, 2005, pp. 182-189.

[30]   S. Machado, F. Paes, B. Velasques, S. Teixeira, R. Piedade, P. Ribeiro, A. E. Nardi and O. Arias-Carrión, “Is rTMS an Effective Therapeutic Strategy That Can Be Used to Treat Anxiety Disorders?” Neuropharmacology, Vol. 62, No. 1, 2011, pp. 125-134.

[31]   A. Pascual-Leone, V. Walsh and J. Rothwell, “Transcranial Magnetic Stimulation in Cognitive Neuroscience-Virtual Lesion, Chronometry, and Functional Connectivity,” Current Opinion in Neurobiology, Vol. 10, No. 2, 2000, pp. 232-237.

[32]   Z. Nahas, X. Li, J. H. Chae, N. C. Oliver, B. Anderson, B. Kapp and M. S. George, “What Does ECS Stand for? Repetitive Transcranial Magnetic Stimulation in Depression,” Epilepsy & Behavior, Vol. 2, No. 3, 2001, 2001, p. 375.

[33]   A. Valentin, R. Arunachalam, A. Mesquita-Rodrigues, J. J. Garcia, M. P. Richardson, K. R. Mills and G. Alarcon, “Late EEG Responses Triggered by Transcranial Magnetic Stimulation (TMS) in the Evaluation of Focal Epilepsy,” Epilepsia, Vol. 49, No. 3, 2007, pp. 470-480.

[34]   N. Osaka, Y. Otsuka, N. Hirose, T. Ikeda, T. Mima, H. Fukuyama and M. Osaka, “Transcranial Magnetic Stimulation (TMS) Applied to Left Dorsolateral Prefrontal Cortex Disrupts Verbal Working Memory Performance in Humans,” Neuroscience Letters, Vol. 418, No. 3, 2007, pp. 232-235.

[35]   S. Pallanti and S. Bernardi. “Neurobiology of Repeated Transcranial Magnetic Stimulation in the Treatment of Anxiety: A Critical Review,” International Clinical Psychopharmacology, Vol. 24, No. 4, 2009, pp. 163-173.

[36]   F. Paes, S. Machado, O. Arias-Carrión, B. Velasques, S. Teixeira, H. Budde, M. Cagy, R. Piedade, P. Ribeiro, J. P. Huston, A. T. Sack and A. E. Nardi, “The Value of Repetitive Transcranial Magnetic Stimulation (rTMS) for the Treatment of Anxiety Disorders: An Integrative Review,” CNS & Neurological Disorders-Drug Targets, Vol. 10, No. 5, 2011, pp. 610-620.

[37]   G.M. Pohost and A.V. Ratner, “Nuclear Magnetic Resonance. Potential Applications in Clinical Cardiology,” JAMA, Vol. 251, No. 10, 1984, pp. 1304-1309.

[38]   N. R. Logothetis, J. Pauls, M. Augath, T. Trinath and A. Oeltermann, “Neurophysiological Investigation of the Basis of the fMRI Signal,” Nature, Vol. 412, No. 6843, 2011, pp. 150-157.

[39]   M. S. Sercheli, E. Bilevicius, A. Alessio, H. Ozelo, F. R. Pereira, J. M. Rondina, F. R. Cendes and J. Covolan, “EEG Spike Source Localization before and after Surgery for Temporal Lobe Epilepsy: A BOLD EEG-fMRI and Independent Component Analysis Study,” Brazilian Journal of Medical and Biological Research, Vol. 42. No. 6, 2009, pp. 582-587.

[40]   M. S. Meneses, J. C. M. Pedroso, R. F. Fuzza and J. B. Milano, “Comparative Analysis of Human Brains Slices with Three Different Staining Techniques,” Arquivos de Neuro-Psiquiatria, Vol. 62. No. 2, 2004, pp. 276-281.

[41]   S. P. Ku, A. S. Tolias, N. K. Logothetis and J. Goense, “fMRI of the Face-Processing Network in the Ventral Temporal Lobe of Awake and Anesthetized Macaques,” Neuron, Vol. 70. No. 2, 2011, pp. 352-362.

[42]   Y. H. Kim, J. W. Park, M. H. Ko and P. K. Lee, “Plastic Changes of Motor Network after Constraint-Induced Movement Therapy,” Yonsei Medical Journal, Vol. 45. No. 2, 2004, pp. 241-246.

[43]   J. C. Eliassen, E. L. Boespflug, M. Lamy, J. Allendorfer, W. J. Chu and J. P. Szaflarski, “Brain-Mapping Techniques for Evaluating Poststroke Recovery and Rehabilitation: A Review,” Topics in Stroke Rehabilitation, Vol. 15. No. 5, 2008, pp. 427-450.

[44]   M. A. Macleod, G. H. Adkisson, M. J. Fox and R. P. Pearson, “99Tcm-HMPAO Single Photon Emission Tomography in the Diagnosis of Cerebral Barotraumas,” British Journal of Radiology, Vol. 61. No. 732, 1988, pp. 1106-1109.

[45]   G. Muehllehner and J. S. Karp, “Positron Emission Tomography,” Physics in Medicine and Biology, Vol. 51, No. 13, 2006, pp. 117-137.

[46]   F. Lomeña and M. Soler, “Clinical Application of Pet,” Brazilian Archives of Biology and Technology, Vol. 48, No. 2, 2005, pp. 179-183.

[47]   H. Lundqvist, M. Lubberink and V. Tolmachev, “Positron Emission Tomography,” European Journal of Physics, Vol. 19, No. 6, 1998, pp. 537-552.

[48]   O. Arias-Carrion, S. Machado, F. Paes, B. Velasques, S. Teixeira, L. Cardenas-Morales, R. Piedade, R. Ribeiro and A. E. Nardi, “Is rTMS an effective Therapeutic Strategy That Can Be Used to Treat Parkinson’s Disease?” CNS & Neurological Disorders-Drug Targets, Vol. 10. No. 6, 2011, pp. 693-702.

[49]   S. Casarotto, L. J. R. Lauro, V. Bellina, A. G. Casali, M. Rosanova, A. Pigorini, S. Defendi, M. Mariotti and M. Massimini, “EEG Responses to TMS Are Sensitive to Changes in the Perturbation Parameters and Repeatable over Time,” PLoS ONE, Vol. 5. No. 4, 2010, Article ID: 10281.

[50]   E. Taub, G. Uswatte, D. K. King, D. Morris, J. E. Crago and A. Chatterjee, “A Placebo-Controlled Trial of Constraint-Induced Movement Therapy for Upper Extremity After Stroke,” Stroke, Vol. 37, 2006, pp. 1045-1049.

[51]   A. Kunkel, B. Kopp, G.K. Miiller, A. Villringer, E. Taub and H. Flor, “Constraint-Induced Movement Therapy for Motor Recovery in Chronic Stroke Patients,” Archives of Physical Medicine and Rehabilitation, Vol. 80, No. 6, 1999, pp. 624-626.

[52]   E. Taub, G. Uswatt and R. Pidikiti, “Constraint-Inducel Movement Therapy: A New Family of Techniques with Broad Application to Physical Rehabilitation—A Clinical Review,” Journal of Rehabilitation Research & Development, Vol. 36. No. 3, 1999, pp. 237-251.

[53]   S. J. Page and P. L. Levine. “Modified Constraint Induced Therapy Extension: Using Remote Technologies to Improve Function,” Archives of Physical Medicine and Rehabilitation, Vol. 36, No. 3, 2007, pp. 922-927.

[54]   S. J. Page, S. Sisto, M. V. Johnston and P. Levine, “Modified Constraint-Induced Therapy after Subacute Stroke: A Preliminary Study,” Neurorehabilitation and Neural Repair, Vol. 16, No. 3, 2002, pp. 290-295.

[55]   M. Hosomi, T. Koyama, T. Takebayashi, S. Terayama, N. Kodama, K. Matsumoto and K. Domen, “A Modified Method for Constraint-Induced Movement Therapy: A Supervised Self-Training Protocol,” Journal of Stroke and Cerebrovascular Diseases, Vol. 21. No. 8, 2011, pp. 767-75.

[56]   C. Y. Wu, Y. W. Hsieh, K. C. Lin, L. L. Chuang, Y. F. Chang, H. L. Liu, C. Chen, K. H. Lin and Y. Y. Wai, “Brain Reorganization after Bilateral Arm Training and Distributed Constraint-Induced Therapy in Stroke Patients: A Preliminary Functional Magnetic Resonance Imaging Study,” Chang Gung Medical Journal, Vol. 33, No. 6, 2010, pp. 628-638.

[57]   S. L. Wolf, P. A, Thompson, C. Winstein, J. P. Miller, S. R. Blanton, D. S. N. Larsen, D. M. Morris, G. Usmatte. E. Taub, K. E. Light and L. Sawaki, “The EXCITE Stroke Trial Comparing Early and Delayed Constraint-Induced Movement Therapy,” Stroke, Vol. 41, No. 10, 2010, pp. 2309-2315.

[58]   J. Biernaskie, G. Chernenko and D. Corbett, “Efficacy of Rehabilitative Experience Declines with Time after Focal Ischemic Brain Injury,” The Journal of Neuroscience, Vol. 24, No. 5, 2004, pp. 1245-1254.

[59]   G. F. Wittenberg, R. Chen, K. Ishii, K. O. Bushara, E. Taub, L. H. Gerber, M. Hallett and L. G. Cohen, “Constraint-Induced Therapy in Stroke: Magnetic-Stimulation Motor Maps and Cerebral Activation,” Neurorehabilitation and Neural Repair, Vol. 17, No. 1, 2003, pp. 48-57.

[60]   C. J. Winstein, C. J. Miller, J. P. Blanton, E. Taub, G. Uswatte, D. Morris, D. Nichols and S. Wolf, “Methods for a Multisite Randomized Trial to Investigate the Effect of Constraint-Induced Movement Therapy in Improving Upper Extremity Function among Adults Recovering from a Cerebrovascular Stroke,” Neurorehabilitation and Neural Repair, Vol. 17, No. 3, 2003, pp. 137-152.

[61]   J. D. Schaechter, E. Kraft, T. S. Hilliard, R. M. Dijkhuizen, T. Benner, S. P. Finklestein, B. R, Rosen and S. C. Cramer, “Motor Recovery and Cortical Reorganization after Constraint-Induced Movement Therapy in Stroke Patients: A Preliminary Study,” Neurorehabilitation and Neural Repair, Vol. 16, No. 4, 2002, pp. 326-328.

[62]   S. Blanton, S. L. Wolf. “An Application of Upper-Extremity Constraint-Induced Movement Therapy in a Patient with Subacute Stroke,” Physical Therapy, Vol. 79, No. 9, 1999, pp. 847-853.

[63]   S. Hakkennes and J. L. Keating, “Constraint-Induced Movement Therapy Following Stroke: A Systematic Review of Randomised Controlled Trials,” Australian Journal of Physiotherapy, Vol. 51, No. 4, 2005, pp. 221-231.

[64]   W. C. Huang, Y. J. Chen, C. L. Chien, H. Kashima and K. C. Lin, “Constraint-Induced Movement Therapy as a Paradigm of Translational Research in Neurorehabilitation: Reviews and Prospects,” American Journal of Translational Research, Vol. 3. No. 1, 2011, pp. 48-60.

[65]   A. Feydy, R. Carlier, A. Roby-Brami, B. Bussel, F, Cazalis, L. Pierot, Y. Burnod and M. A. Maier, “Longitudinal Study of Motor Recovery after Stroke: Recruitment and Focusing of Brain Activation,” Stroke, Vol. 33 No. 6, 2002, pp. 1610-1617.

[66]   B. Sheng and M. Lin, “A Longitudinal Study of Functional Magnetic Resonance Imaging in Upper-Limb Hemiplegia after Stroke Treated with Constraint-Induced Movement Therapy,” Brain Injury, Vol. 23. No. 1, 2009, pp. 65-70.

[67]   C. E. Levy, D. S. Nichols, P. M. Schmalbrock, P. Keller and D. W. Chakeres, “Functional MRI Evidence of Cortical Reorganization in Upper-Limb Stroke Hemiplegia Treated with Constraint-Induced Movement Therapy,” American Journal of Physical Medicine & Rehabilitation, Vol. 80, No. 1, 2001, pp. 4-12.

[68]   P. Rossini, P. Mand and S. Rossi. “Transcranial Magnetic Stimulation: Diagnostic, Therapeutic, and Research Potential,” Neurology, Vol. 68. No. 7, 2007, pp. 484-488.

[69]   Z. R. Hunter, “Plasticity of the Adult Human Brain and Motor Recovery after Stroke,” Institute of Cognitive Science, Vol. 36, No. 213, 2005, p. 5:1.

[70]   J. Liepert, W. H. R. Miltner, H. Bauder, M. Sommer, C. Dettmers, E. Taub and C. Weiller, “Motor Cortex Plasticity during Constraint-Induced Movement Therapy in Stroke Patients,” Neuroscience Letters, Vol. 250, No. 1, 1998, pp. 5-8.

[71]   H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. M. Mall and S. Taudt, “Cortical Neuromodulation by Constraint-Induced Movement Therapy in Congenital Hemiparesis: An fMRI Study,” Neuropediatrics, Vol. 38, No. 3, 2007, pp. 130-136.

[72]   M. Könönen, J. T. Kuikka, M. Husso-Saastamoinen, E. Vanninen, R. Vanninen, S. Soimakallio, E. Mervaala, J. Sivenius, K. Pitkänen and I. M. Tarkka, “Increased Perfusion in Motor Areas after Constraint-Induced Movement Therapy in Chronic Stroke: A Single-Photon Emission Computerized Tomography Study,” Journal of Cerebral Blood Flow & Metabolism, Vol. 25, No. 12, 2005, pp. 1668-1674.

[73]   M. N. Economo and J. A. White, “Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition,” PLOS Computational Biology, Vol. 8, No. 1, 2012, Article ID: 1002354.

[74]   A. Kleim and T. A. Jones, “Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage,” Journal of Speech, Language, and Hearing Research, Vol. 51, No. 1, 2008, pp. 225-239.

[75]   C. Boake, E.A. Noser, T. Ro, S. Baraniuk, M. Gaber, R. Johnson, E. T. Salmeron, T. M. Tran, J. M. Lai, E. Taub, L. A. Moye, J. C. Grotta and H. S. Levin, “Constraint-Induced Movement Therapy during Early Stroke Rehabilitation,” Neurorehabilitation and Neural Repair, Vol. 21, No. 1, 2007, pp. 14-24.