Computing Approximation GCD of Several Polynomials by Structured Total Least Norm

Show more

References

[1] B. DeMoor, “Total Least Squares for Affinely Structured Matrices and the Noisy Realization Problem,” IEEE Transactions on Signal Process, Vol. 42, No. 11, 1994, pp. 3104-3113. http://dx.doi.org/10.1109/78.330370

[2] R. M. Corless, P. M. Gianni, B. M. Tragerm and S. M. Watt, “The Singular Value Decomposition for Polynomial System,” Proceedings of International Symposium on Symbolic and Algebraic Computation, Montreal, 1995, pp. 195-207

[3] S. R. Khare, H. K. Pillai and M. N. Belur, “Numerical Algorithm for Structured Low Rank Approximation Problem,” Proceeding of the 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest, Hungary, 2010.

[4] E. Kaltofen, Z. F. Yang and L. H. Zhi, “Approximate Greatest Common Divisors of Several Polynomials with Linearly Constrained Coecients and Simgular Polynomials,” Proceedings of International Symposium on Symbolic and Algebraic Computations, Genova, 2006.

[5] N. Karkanias, S. Fatouros, M. Mitrouli and G. H. Halikias, “Approximate Greatest Common Divisor of Many Polynomials, Generalised Resultants, and Strength of Approximation,” Computers & Mathematics with Applications, Vol. 51, No. 12, 2006, pp. 1817-1830.
http://dx.doi.org/10.1016/j.camwa.2006.01.010

[6] I. Markovsky, “Structured Low-Rank Approximation and Its Applications,” Automatica, Vol. 44, No. 4, 2007, pp. 891-909.
http://dx.doi.org/10.1016/j.automatica.2007.09.011

[7] D. Rupprecht, “An Algorithm for Computing Certied Approximate GCD of Univariate Polynomials,” Journal of Pure and Applied Algebra, Vol. 139, No. 1-3, 1999, pp. 255-284.
http://dx.doi.org/10.1016/S0022-4049(99)00014-6

[8] J. A. Cadzow, “Signal Enhancement: A Composite Property Mapping Algorithm,” IEEE Transactions on Acoustic Speech Signal Process, Vol. 36, No. 1, 1988, pp. 49- 62. http://dx.doi.org/10.1109/29.1488

[9] G. Cybenko, “A General Orthogonalization Technique with Applications to Time Series Analysis and Signal Processing,” Mathematics of Computation, Vol. 40, 1983, pp. 323-336.
http://dx.doi.org/10.1090/S0025-5718-1983-0679449-6

[10] J. R. Winkler and J. D. Allan, “Structured Total Least Norm and Approximate GCDs of Inexact Polynomials,” Journal of Computational and Applied Mathematics, Vol. 215, No. 1, 2008, pp. 1-13.
http://dx.doi.org/10.1016/j.cam.2007.03.018

[11] A. Frieze, R. Kannaa and S. Vempala, “Fast Monte-Carlo Algorithm for Finding Low Rank Approximations,” Journal of ACM, Vol. 51, No. 6, 2004, pp. 1025-1041.
http://dx.doi.org/10.1145/1039488.1039494

[12] R. Beer, “Quantitative in Vivo NMR (Nuclear Magnetic Resonance on Living Objects),” University of Technology Delft, 1995.

[13] B. Paola, “Structured Matrix-Based Methods for Approximate Polynomial GCD,” Edizioni della Normale, 2011.

[14] M. T. Chu, R. E. Funderlic and R. J. Plemmons, “Structured Low Rank Approximation,” Linear Algebra Applications, Vol. 366, No. 1, 2003, pp. 157-172.
http://dx.doi.org/10.1016/S0024-3795(02)00505-0

[15] B. Beckermann and G. Labahn, “A Fast and Numerically Stable Euclidean-Like Algorithm for Detecting Relative Prime Numerical Polynomials,” IEEE Journal of Symbolic Computation, Vol. 26, No. 6, 1998, pp. 691-714.
http://dx.doi.org/10.1006/jsco.1998.0235

[16] B. Y. Li, Z. F. Yang and L. H. Zhi, “Fast Low Rank Approximation of a Sylvester Matrix by Structured Total Least Norm,” Journal of JSSAC (Japan Society for Symbolic and Algebraic Computation), Vol. 11, No. 34, 2005, pp. 165-174.

[17] B. Botting, M. Giesbrecht and J. May, “Using Riemannian SVD for Problems in Approximate Algebra,” Proceedings of the 2005 International Workshop on Symbolic-Numeric, 2005, Xi’an.

[18] E. Kaltofen, Z. F. Yang and L. H. Zhi, “Structured Low Rank Approximation of a Sylvester Matrix,” International Workshop on Symbolic-Numeric Computation, Xi’an, 2005, pp. 19-21.

[19] H. Park, L. Zhang and J. B. Rosen, “Low Rank Approximation of a Hankel Matrix by Structured Total Least Norm,” BIT Numerical Mathematics, Vol. 39, No. 4, 1999, pp. 757-779.
http://dx.doi.org/10.1023/A:1022347425533

[20] L. H. Zhi and Z. F. Yang, “Computing Approximate GCD of Univariate Polynomials by Structure Total Least Norm,” Mathematics-Mechanization Research Preprints, No. 24, 2004, pp. 375-387.

[21] Z. Zeng and B. H. Dayton, “The Approximate GCD of Inexact Polynomials Part 2: A Multivariate Algorithm,” Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, Santander, 2004.