OJAP  Vol.2 No.4 , December 2013
Atmospheric Deposition and Critical Loads for Nitrogen and Metals in Arctic Alaska: Review and Current Status
Abstract: To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being collected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.  
Cite this paper: G. Linder, W. Brumbaugh, P. Neitlich and E. Little, "Atmospheric Deposition and Critical Loads for Nitrogen and Metals in Arctic Alaska: Review and Current Status," Open Journal of Air Pollution, Vol. 2 No. 4, 2013, pp. 76-99. doi: 10.4236/ojap.2013.24010.

[1]   S. G. Fancy, J. E. Gross and S. L. Carter, “Monitoring the Condition of Natural Resources in Us National Parks,” Environmental Monitoring and Assessment, Vol. 151, No. 1-4, 2009, pp. 161-174.

[2]   J. Nilsson and P. Grennfelt, “Critical Loads for Sulphur and Nitrogen: Report from a Workshop Held at Stockloster,” UN/ECE and Nordic Council of Ministers, 19-24 March 1988.

[3]   United Nations Economic Commission for Europe (UNECE), “Manual on Methodologies and Criteria for Modeling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks, and Trends,” Federal Environmental Agency (Umweltbundesamt), Berlin, 2004, p. 253.

[4]   L. H. Pardo, M. E. Fenn, C. L. Goodale, L. H. Geiser, C. T. Driscoll, E. B. Allen, J. S. Baron, R. Bobbink, W. D. Bowman, C. M. Clark, B. Emmett, F. S. Gilliam, T. L. Greaver, S. J. Hall, E. A. Lilleskov, L. L. Liu, J. A. Lynch, K. J. Nadelhoffer, S. S. Perakis, M. J. Robin-Abbott, J. L. Stoddard, K. C. Weathers and R. L. Dennis, “Effects of Nitrogen Deposition and Empirical Nitrogen Critical Loads for Ecoregions of the United States,” Ecological Applications, Vol. 21, No. 8, 2011, pp. 3049-3082.

[5]   United Nations Economic Commission for Europe (UNECE), “Hemispheric Transport of Air Pollution,” Air Pollution Studies No. 16, United Nations, Geneva, 2007, p. 165.

[6]   United States Environmental Protection Agency (USEPA), “National Ambient Air Quality Standards (NAAQS),” 2011.

[7]   United States Environmental Protection Agency (USEPA), “Policy Assessment for the Review of the Secondary National Ambient Air Quality Standards for Nox and Sox: Second External Review Draft,” U.S. Environmental Protection Agency, Research Triangle Park, NC, Washington, DC, 2010, p. 449.

[8]   United States Environmental Protection Agency (USEPA), “Air Quality Planning and Standards,” 2012.

[9]   United States Environmental Protection Agency (USEPA), “Mercury & Air Toxics Standards,” 2012.

[10]   G. J. Reinds, J. E. Groenenberg and W. de Vries, “Critical Loads of Copper, Nickel, Zinc, Arsenic, Chromium and Selenium for Terrestrial Ecosystems at a European Scale: A Preliminary Assessment,” Alterra, Wageningen, 2006.

[11]   J. Slootweg, J. P. Hettelingh, M. Posch, G. Schütze, T. Spranger, W. de Vries, G. J. Reinds, M. van’t Zelfde, S. Dutchak and I. Ilyin, “European Critical Loads of Cadmium, Lead and Mercury and Their Exceedances,” In: P. Brimblecombe, H. Hara, D. Houle and M. Novak, Eds., Acid Rain-Deposition to Recovery, Springer, Netherlands, 2007, pp. 371-377.

[12]   National Atmospheric Deposition Monitoring Program (NADP), “National Atmospheric Deposition Program/National Trends Network,” 2012.

[13]   C. E. Stephan, et al., “Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses, Epa 822/R-85/100,” In: US Environmental Protection Agency, Office Research & Development, Washington, DC, 1985, p. 104.

[14]   S. Jovan, “Lichen Bioindication of Biodiversity, Air Quality, and Climate: Baseline Results from Monitoring in Washington, Oregon, and California,” In: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, 2008, p. 115.

[15]   L. H. Pardo, “Approaches for Estimating Critical Loads of Nitrogen and Sulfur Deposition for Forest Ecosystems on US Federal Lands,” In: Newtown Square, 2006, p. 25.

[16]   M. E. Fenn, E. B. Allen, S. B. Weiss, S. Jovane, L. H. Geiser, G. S. Tonnesen, R. F. Johnson, L. E. Rao, B. S. Gimeno, F. Yuan, T. Meixner and A. Bytnerowicz, “Nitrogen Critical Loads and Management Alternatives for N-Impacted Ecosystems in California,” Journal of Environmental Management, Vol. 91, No. 12, 2010, pp. 2404-2423.

[17]   M. E. Fenn, S. Jovan, F. Yuan, L. Geiser, T. Meixner and B. S. Gimeno, “Empirical and Simulated Critical Loads for Nitrogen Deposition in California Mixed Conifer Forests,” Environmental Pollution, Vol. 155, No. 3, 2008, pp. 492-511.

[18]   M. E. Fenn, “The Effects of Nitrogen Deposition, Ambient Ozone, and Climate Change on Forests in the Western US,” In: C. Aguirre Bravo, Ed., Monitoring Science and Technology Symposium Proceedings Unifying Knowledge for Sustainability in the Western Hemisphere: Proceedings Rmrs-P-42cd, 20-24 September 2004, Denver, Co, USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, 2006, pp. 2-8.

[19]   D. A. Glavich and L. H. Geiser, “Potential Approaches to Developing Lichen-Based Critical Loads and Levels for Nitrogen, Sulfur and Metal-Containing Atmospheric Pollutants in North America,” The Bryologist, Vol. 111, No. 4, 2008, pp. 638-649.

[20]   L. Fisher, P. Mays and C. Wylie, “An Overview of Nitrogen Critical Loads for Policy Makers, Stakeholders, and Industries in the United States,” Water, Air, & Soil Pollution, Vol. 179, No. 1-4, 2007, pp. 3-18.

[21]   P. Hoegberg, H. Fan, M. Quist, D. Binkley and C. O. Tamm, “Tree Growth and Soil Acidification in Response to 30 Years of Experimental Nitrogen Loading on Boreal Forest,” Global Change Biology, Vol. 12, No. 3, 2006, pp. 489-499.

[22]   A. Nordin, J. Strengbom, J. Witzell, T. N?sholm and L. Ericson, “Nitrogen Deposition and the Biodiversity of Boreal Forests: Implications for the Nitrogen Critical Load,” AMBIO: A Journal of the Human Environment, Vol. 34, No. 1, 2005, pp. 20-24.

[23]   A. J. Gold and J. T. Sims, “Eutrophication,” In: H. Daniel, Ed., Encyclopedia of Soils in the Environment, Elsevier, Oxford, 2005, pp. 486-494.

[24]   V. H. Smith, S. B. Joye and R. W. Howarth, “Eutrophication of Freshwater and Marine Ecosystems,” Limnology and Oceanography, Vol. 51, No. 1, 2006, pp. 351-355.

[25]   J. Aber, et al., “Forest Processes and Global Environmental Change: Predicting the Effects of Individual and Multiple Stressors,” BioScience, Vol. 51, No. 9, 2001, pp. 735-751.[0735:FPAGEC]2.0.CO;2

[26]   M. Hornung, H. Dyke, J. R. Hall and S. E. Metcalfe, “The Critical Load Approach to Air Pollution Control,” In: R. E. Hester and R. M. Harrison, Eds., Air Quality Manage ment, The Royal Society of Chemistry, London, 1997, pp. 119-140.

[27]   R. Bobbink and J. P. Hettelingh, “Review and Revision of Empirical Critical Loads and Dose-Response Relation ships: Proceedings of an Expert Workshop, Noordwijker hout, 23-25 June 2010,” In: Coordination Centre for Ef fects, National Institute for Public Health and the Envi ronment (RIVM), Bilthoven, The Netherlands, 2011, p. 244.

[28]   R. Bobbink, K. Hicks , J. Galloway, T. Spranger, R. Al kemade, M. Ashmore, M. Bustamante, S. Cinderby, E. Davidson, F. Dentener, B. Emmett, J. W. Erisman, M. Fenn, F. Gilliam, A. Nordin, L. Pardo and W. De Vries, “Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: A Synthesis,” Ecological Applications, Vol. 20, No. 1, 2010, pp. 30-59.

[29]   L. H. Geiser, S. E. Jovan, D. A. Glavich and M. K. Porter, “Lichen-Based Critical Loads for Atmospheric Nitrogen Deposition in Western Oregon and Washington Forests, USA,” Environmental Pollution, Vol. 158, No. 7, 2010, pp. 2412-2421.

[30]   L. H. Geiser and P. N. Neitlich, “Air Pollution and Climate Gradients in Western Oregon and Washington Indicated by Epiphytic Macrolichens,” Environmental Pollution, Vol. 145, No. 1, 2007, pp. 203-218.

[31]   L. H. Pardo, “Assessment of Nitrogen Deposition Effects and Empirical Critical Loads of Nitrogen for Ecoregions of the United States, Chapter 19,” In: L. H. Pardo, M. J. Robin-Abbott and C. T. Driscoll, Eds., United States Department of Agriculture, Forest Service, Northern Research Station, General Technical Report NRS-80, Newtown Square, 2011.

[32]   B. Achermann and R. Bobbink, “Empirical Critical Loads for Nitrogen,” Proceedings of Expert Workshop, Berne, Switzerland, 11-13 November 2002, In: Swiss Agency for the Environment, Forests and Landscape (SAEFL), Berne, 2003, p. 327.

[33]   W. De Vries and J. E. Groenenberg, “Evaluation of Approaches to Calculate Critical Metal Loads for Forest Ecosystems,” Environmental Pollution, Vol. 157, No. 12, 2009, pp. 3422-3432.

[34]   J. R. Hall, M. Ashmore, J. Fawehinmi, C. Jordan, S. Lofts, L. Shotbolt, D. J. Spurgeon, C. Svendsen and E. Tipping, “Developing a Critical Load Approach for National Risk Assessments of Atmospheric Metal Deposition,” Environmental Toxicology and Chemistry, Vol. 25, No. 3, 2006, pp. 883-890.

[35]   W. De Vries and D. J. Bakker, “Manual for Calculating Critical Loads of Heavy Metals for Terrestrial Ecosystems: Guidelines for Critical Limits, Calculation Methods and Input Data,” DLO Winand Staring Centre, Wageningen, 1998.

[36]   W. De Vries, D. J. Bakker, J. E. Groenenberg, G. J. Reinds, J. Bril and J. A. van Jaarsveld, “Calculation and Mapping of Critical Loads for Heavy Metals and Persistent Organic Pollutants for Dutch Forest Soils,” Journal of Hazardous Materials, Vol. 61, No. 1-3, 1998, pp. 99-106.

[37]   W. De Vries, G. Schuetze, Steve Lofts, E. W. Tipping, M. Meili, P. F. A. M. Roemkens and J. E. Groenenberg, “Calculation of Critical Loads for Cadmium, Lead and Mercury: Background Document to a Mapping Manual on Critical Loads of Cadmium, Lead and Mercury,” Alterra, Wageningen, 2005.

[38]   S. Lofts, “Critical Loads of Metals and Other Trace Elements to Terrestrial Environments,” Environmental Science & Technology, Vol. 41, No. 18, 2007, pp. 6326-6331.

[39]   J. Slootweg, J. P. Hettelingh, M. Posch, S. Dutchak, I. Ilyin, “Critical Loads of Cadmium, Lead and Mercury in Europe,” In: Report 259101015/2005, Netherlands Environmental Assessment Agency, Bilthoven, 2005, p. 145.

[40]   M. Ashmore, et al., “Further Development of an Effect (Critical Loads) Based Approach for Cadmium, Copper, Lead and Zinc,” In: Department for Environment, Food and Rural Affairs, London, 2004, p. 130.

[41]   J. P. Hettelingh, M. Posch and J. Slootweg, “Critical Load, Dynamic Modelling and Impact Assessment in Europe: Cce Status Report 2008,” In: Netherlands Environmental Assessment Agency, Bilthoven, 2008, p. 231.

[42]   M. Posch and W. De Vries, “Dynamic Modelling of Metals—Time Scales and Target Loads,” Environmental Modelling & Software, Vol. 24, No. 1, 2009, pp. 86-95.

[43]   H. E. Allen, “Bioavailability of Metals in Terrestrial Ecosystems: Importance of Partitioning for Bioavailability to Invertebrates, Microbes, and Plants,” SETAC Press, Pensacola, 2002, p. 158.

[44]   German Federal Environmental Protection Agency (Umweltbundesamt), “Critical Loads for Heavy Metals,” In: T. Spranger, U. Lorenz and H.-D. Gregor, Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends, 2004, 266 p.

[45]   J. Slootweg, M. Posch and J. P. Hettelingh, “Progress in the Modelling of Critical Thresholds, Impacts to Plant Species Diversity and Ecosystem Services in Europe: Cce Status Report 2010,” Coordination Centre for Effects, 2010, p. 186.

[46]   M. M. Savard, G. F. Bonham-Carter and C. M. Banic, “A Geoscientific Perspective on Airborne Smelter Emissions of Metals in the Environment: An Overview,” Geochemistry: Exploration, environment, analysis, Vol. 6, No. 2-3, 2006, pp. 99-109.

[47]   M. Conti and G. Cecchetti, “Biological Monitoring: Lichens as Bioindicators of Air Pollution Assessment—A Review,” Environmental Pollution, Vol. 114, No. 3, 2001, pp. 471-492.

[48]   A. Rühling and G. Tyler, “Sorption and Retention of Heavy Metals in the Woodland Moss Hylocomium Splendens (Hebw.) Br. Et Sch,” Oikos, Vol. 21, No. 1, 1970, pp. 92-97.

[49]   E. Steinnes, “Biomonitors of Air Pollution by Heavy Metals,” Control and Fate of Atmospheric Trace Metals, Kluwer Academic Publishers, Dordrecht, 1989, p. 321.

[50]   H. Harmens, et al., “Mosses as Biomonitors of Atmospheric Heavy Metal Deposition: Spatial Patterns and Temporal Trends in Europe,” Environmental Pollution, Vol. 158, No. 10, 2010, pp. 3144-3156.

[51]   Z. Jeran, R. Jacimovic and P. Pavsic Mikuz, “Lichens and Mosses as Biomonitors,” Journal de Physique IV (Proceedings), Vol. 107, No. 1, 2003, pp. 675-678.

[52]   K. Szczepaniak and M. Biziuk, “Aspects of the Biomonitoring Studies Using Mosses and Lichens as Indicators of Metal Pollution,” Environmental Research, Vol. 93, No. 3, 2003, pp. 221-230.

[53]   B. Wolterbeek, “Biomonitoring of Trace Element Air Pollution: Principles, Possibilities and Perspectives,” Environmental Pollution, Vol. 120, No. 1, 2002, pp. 11-21.

[54]   H. G. Zechmeister, K. Grodzińska and G. Szarek-?ukaszewska, “Bryophytes,” In: A. M. Breure, B. A. Markert and H. G. Zechmeister, Eds., Bioindicators and Biomonitors: Principles, Concepts and Applications, Oxford, 2003, pp. 329-375.

[55]   P. C. Onianwa, “Monitoring Atmospheric Metal Pollution: A Review of the Use of Mosses as Indicators,” Environmental Monitoring and Assessment, Vol. 71, No. 1, 2001, pp. 13-50.

[56]   J. W. Bates, “Mineral Nutrition, Substratum Ecology, and Pollution,” In: A. J. Shaw and B. Goffinet, Eds., Bryophyte Ecology, Cambridge University Press, Cambridge, 2000, pp. 248-311.

[57]   M. C. F. Proctor, “Physiological Ecology,” In: A. J. Shaw and B. Goffinet, Eds., Bryophyte Biology, Cambridge University Press, Cambridge, 2000, pp. 225-247.

[58]   J. R. Aboal, J. A. Fernandez, T. Boquete and A. Carballeira, “Is It Possible to Estimate Atmospheric Deposition of Heavy Metals by Analysis of Terrestrial Mosses?” Science of the Total Environment, Vol. 408, No. 24, 2010, pp. 6291-6297.

[59]   T. Berg and E. Steinnes, “Is It Possible to Estimate Atmospheric Deposition of Heavy Metals by Analysis of Terrestrial Mosses?...(Rebuttal),” In: Book of Abstracts, p 9, 24th Task Force Meeting ICP Vegetation, RapperswilJona, SWI, 31 January-3 February 2011.

[60]   J. R. Aboal, A. Pérez-Llamazares, A. Carballeira, S. Giordano and J. A. Fernández, “Should Moss Samples Used as Biomonitors of Atmospheric Contamination Be Washed?” Atmospheric Environment, Vol. 45, 2011, pp. 6837-6840.

[61]   C. Reimann, H. Niskavaarab, G. Kashulinac, P. Filzmoserd, R. Boyda, T. Voldena, O. Tomilinae and I. Bogatyreve, “Critical Remarks on the Use of Terrestrial Moss (Hylocomium splendens and Pleurozium schreberi) for Monitoring of Airborne Pollution,” Environmental Pollution, Vol. 113, No. 1, 2001, pp. 41-57.

[62]   M. Boquete, J. Fernández, J. Aboal, C. Real and A. Carballeira, “Spatial Structure of Trace Elements in Extensive Biomonitoring Surveys with Terrestrial Mosses,” Science of the Total Environment, Vol. 408, No. 1, 2009, pp. 153-162.

[63]   M. T. Boquete, J. A. Fernández, J. R. Aboal and A. Carballeira, “Analysis of Temporal Variability in the Concentrations of Some Elements in the Terrestrial Moss Pseudoscleropodium purum,” Environmental and Experimental Botany, Vol. 72, No. 2, 2011, pp. 210-216.

[64]   E. Steinnes, “A Critical Evaluation of the Use of Naturally Growing Moss to Monitor the Deposition of Atmospheric Metals,” Science of the Total Environment, Vol. 160-161, No. 1, 1995, pp. 243-249.

[65]   J. Ford, D. Landers, D. Kugler, B. Lasorsa, S. Allen-Gil, E. Crecelius and J. Martinson, “Inorganic Contaminants in Arctic Alaskan Ecosystems: Long-Range Atmospheric Transport or Local Point Sources?” Science of the Total Environment, Vol. 160, No. 1, 1995, pp. 323-335.

[66]   L. González-Miqueo, D. Elustondo, E. Lasheras and J. M. Santamaría, “Use of Native Mosses as Biomonitors of Heavy Metals and Nitrogen Deposition in the Surroundings of Two Steel Works,” Chemosphere, Vol. 78, No. 8, 2010, pp. 965-971.

[67]   H. Harmens, et al., “Nitrogen Concentrations in Mosses Indicate the Spatial Distribution of Atmospheric Nitrogen Deposition in Europe,” Environmental Pollution, Vol. 159, No. 10, 2011, pp. 2852-2860.

[68]   E. Steinnes, T. Berg and H. T. Uggerud, “Three Decades of Atmospheric Metal Deposition in Norway as Evident from Analysis of Moss Samples,” Science of the Total Environment, Vol. 412-413, No. 12, 2011, pp. 351-358.

[69]   M. Aceto, O. Abollino, R. Conca, M. Malandrino, E. Mentasti and C. Sarzanini, “The Use of Mosses as Environmental Metal Pollution Indicators,” Chemosphere, Vol. 50, No. 3, 2003, pp. 333-342.

[70]   S. Chakrabortty and G. T. Paratkar, “Biomonitoring of Trace Element Air Pollution Using Mosses,” Aerosol and Air Quality Research, Vol. 6, No. 3, 2006, pp. 247-258.

[71]   T. Berg and E. Steinnes, “Use of Mosses (Hylocomium splendens and Pleurozium schreberi) as Biomonitors of Heavy Metal Deposition: From Relative to Absolute Deposition Values,” Environmental Pollution, Vol. 98, No. 1, 1997, pp. 61-71.

[72]   D. ?eburnis and D. Valiulis, “Investigation of Absolute Metal Uptake Efficiency from Precipitation in Moss,” Science of the Total Environment, Vol. 226, No. 2-3, 1999, pp. 247-253.

[73]   C. Reimann, A. Arnoldussen, R. Boyd, T. E. Finne, ?. Nordgulen, T. Volden and P. Englmaier, “The Influence of a City on Element Contents of a Terrestrial Moss (Hylocomium splendens),” Science of the Total Environment, Vol. 369, No. 1-3, 2006, pp. 419-432.

[74]   J. A. Couto, J. A. Fernández, J. R. Aboal and A. Carballeira, “Active Biomonitoring of Element Uptake with Terrestrial Mosses: A Comparison of Bulk and Dry Deposition,” Science of the Total Environment, Vol. 324, No. 1, 2004, pp. 211-222.

[75]   H. Harmens, et al., “Country-Specific Correlations across Europe between Modelled Atmospheric Cadmium and Lead Deposition and Concentrations in Mosses,” Environmental Pollution, Vol. 166, No. 7, 2012, pp. 1-9.

[76]   H. Harmens, G. Mills, F. Hayes and D. Norris, “Air Pollution and Vegetation. ICP Vegetation Annual Report 2010/ 2011,” NERC/Centre for Ecology & Hydrology, 2011.

[77]   S. Güsewell, “N: P Ratios in Terrestrial Plants: Variation and Functional Significance,” New Phytologist, Vol. 164, No. 2, 2004, pp. 243-266.

[78]   T. Nash, “Nutrients, Elemental Accumulation and Mineral Cycling, In,” In: T. Nash, Ed., Lichen Biology, Cambridge University Press, Cambridge, 2008.

[79]   E. A. Paul, “Soil Microbiology, Ecology, and Biochemistry,” Academic Press, Boston, 2007, p. 532.

[80]   T. Liengen and R. A. Olsen, “Nitrogen Fixation by FreeLiving Cyanobacteria from Different Coastal Sites in a High Arctic Tundra, Spitsbergen,” Arctic and Alpine Research, Vol. 29, No. 4, 1997, pp. 470-477.

[81]   D. A. Lipson, S. K. Schmidt and R. K. Monson, “Links between Microbial Population Dynamics and Nitrogen Availability in an Alpine Ecosystem,” Ecology, Vol. 80, No. 5, 1999, pp. 1623-1631.[1623:LBMPDA]2.0.CO;2

[82]   D. R. Nemergut, A. R. Townsend, S. R. Sattin, K. R. Freeman, N. Fierer, J. C. Neff, W. D. Bowman, C. W. Schadt, M. N. Weintraub and S. K. Schmidt, “The Effects of Chronic Nitrogen Fertilization on Alpine Tundra Soil Microbial Communities: Implications for Carbon and Nitrogen Cycling,” Environmental Microbiology, Vol. 10, No. 11, 2008, pp. 3093-3105.

[83]   A. Nordin, I. K. Schmidt and G. R. Shaver, “Nitrogen Uptake by Arctic Soil Microbes and Plants in Relation to Soil Nitrogen Supply,” Ecology, Vol. 85, No. 4, 2004, pp. 955-962.

[84]   C. Gordon, J. Wynn and S. Woodin, “Impacts of Increased Nitrogen Supply on High Arctic Heath: The Importance of Bryophytes and Phosphorus Availability,” New Phytologist, Vol. 149, No. 3, 2001, pp. 461-471.

[85]   G. R. Shaver and F. S. Chapin, “Response to Fertilization by Various Plant Growth Forms in an Alaskan Tundra: Nutrient Accumulation and Growth,” Ecology, Vol. 61, No. 3, 1980, pp. 662-675.

[86]   M. Hornung and M. A. Sutton, “Impacts of Nitrogen Deposition in Terrestrial Ecosystems,” Atmospheric Environment, Vol. 29, No. 22, 1995, pp. 3395-3396.

[87]   J. Gornall, I. Jónsdóttir, S. Woodin and R. Van der Wal, “Arctic Mosses Govern Below-Ground Environment and Ecosystem Processes,” Oecologia, Vol. 153, No. 4, 2007, pp. 931-941.

[88]   P. Laj, J. M. Palais and H. Sigurdsson, “Changing Sources of Impurities to the Greenland Ice Sheet over the Last 250 Years,” Atmospheric Environment. Part A. General Topics, Vol. 26, No. 14, 1992, pp. 2627-2640.

[89]   A. Neftel, J. Beer, H. Oeschger, F. Zurcher and R. C. Finkel, “Sulphate and Nitrate Concentrations in Snow from South Greenland 1895-1978,” Nature, Vol. 314, No. 6012, 1985, pp. 611-613.

[90]   W. L. Chapman and J. E. Walsh, “Recent Variations of Sea Ice and Air Temperature in High Latitudes,” Bulletin of the American Meteorological Society, Vol. 74, No. 1, 1993, pp. 33-47.

[91]   I. S. Jónsdóttir, T. V. Callaghan and J. A. Lee, “Fate of Added Nitrogen in a Moss-Sedge Arctic Community and Effects of Increased Nitrogen Deposition,” Science of the Total Environment, Vol. 160-161, No. 1, 1995, pp. 677-685.

[92]   L. D. Hinzman, N. D. Bettez, W. R. Bolton, et al., “Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions,” Climatic Change, Vol. 72, No. 3, 2005, pp. 251-298.

[93]   A. Katttenberg and J. Mitchell, “Climate Models-Projections of Future Climate,” Climate Change 1995: The Science of Climate Change, Cambridge Univeristy Press, Cambridge, 1996, pp. 285-358.

[94]   W. R. Rouse, M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. Marsh, M. Mcdonald, B. J. Nicholson, N. T. Roulet and J. P. Smol, “Effects of Climate Change on the Freshwaters of Arctic and Subarctic North America,” Hydrological Processes, Vol. 11, No. 8, 1997, pp. 873-902.<873::AID-HYP510>3.0.CO;2-6

[95]   K. J. Nadelhoffer, A. E. Giblin, G. R. Shaver and J. A. Laundre, “Effects of Temperature and Substrate Quality on Element Mineralization in Six Arctic Soils,” Ecology, Vol. 72, No. 1, 1991, pp. 242-253.

[96]   K. J. Nadelhoffer and J. W. Raich, “Fine Root Production Estimates and Belowground Carbon Allocation in Forest Ecosystems,” Ecology, Vol. 73, No. 4, 1992, pp. 11391147.

[97]   C. H. Robinson, P. A. Wookey, J. A. Lee, T. V. Callaghan and M. C. Press, “Plant Community Responses to Simulated Environmental Change at a High Arctic Polar SemiDesert,” Ecology, Vol. 79, No. 3, 1998, pp. 856-866.[0856:PCRTSE]2.0.CO;2

[98]   C. Robinson, P. A. Wookey, A. N. Parsons, J. A. Potter, T. V. Callaghan, J. A. Lee, M. C. Press and J. M. Welker, “Responses of Plant Litter Decomposition and Nitrogen Mineralisation to Simulated Environmental Change in a High Arctic Polar Semi-Desert and a Subarctic Dwarf Shrub Heath,” Oikos, Vol. 74, No. 3, 1995, pp. 503-512.

[99]   D. A. Jaffe and M. D. Zukowski, “Nitrate Deposition to the Alaskan Snowpack,” Atmospheric Environment. Part A. General Topics, Vol. 27, No. 17-18, 1993, pp. 29352941.

[100]   M. Nenonen, “Report on Acidification in the Arctic Countries: Man-Made Acidification in a World of Natural Extremes,” In: The State of the Arctic Environment: Reports, Arctic Centre, University of Lapland, Rovaniemi, 1991, pp. 7-81.

[101]   S. J. Woodin, “Effects of Acid Deposition on Arctic Vegetation,” In: S. J. Woodin and M. Mick, Eds., Ecology of Arctic Environments, Blackwell Science, Oxford, 1997, pp. 21-240.

[102]   Arctic Monitoring and Assessment Program (AMAP), “Arctic Pollution Issues: A State of the Arctic Environment Report,” In: Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 1997, p. xii+188.

[103]   F. S. I. Chapin, M. Oswood, K. Van Cleve, L. A. Viereck and D. L. Verbyla, “Alaska’s Changing Boreal Forest,” Oxford University Press, New York, 2006.

[104]   L. Biegler, G. Biros (Editor), O. Ghattas, M. Heinkenschloss, D. Keyes, B. Mallick, L. Tenorio, B. van Bloemen Waanders, K. Willcox and Y. Marzouk, “Large-Scale Inverse Problems and Quantification of Uncertainty,” John Wiley & Sons, Chichester, 2011, p. 372.

[105]   M. Forsius, M. Posch, J. Aherne, G. J. Reinds, J. Christensen, L. Hole, “Assessing the Impacts of Long-Range Sulfur and Nitrogen Deposition on Arctic and Sub-Arctic Ecosystems,” AMBIO: A Journal of the Human Environment, Vol. 39, No. 2, 2010, pp. 136-147.

[106]   N. Gruber and J. N. Galloway, “An Earth-System Perspective of the Global Nitrogen Cycle,” Nature, Vol. 451, No. 7176, 2008, pp. 293-296.

[107]   J. G. Crock, et al., “Element Concentrations and Trends for Moss, Lichen, and Surface Soils in and near Denali National Park and Preserve, Alaska, Open-File Report 92-323,” In: US Department of the Interior, US Geological Survey, Reston, 1992.

[108]   Z. M. Migaszewski, A. Ga?uszka, J. G. Crock, P. J. Lamothe and S. Do??gowska, “Interspecies and Interregional Comparisons of the Chemistry of Pahs and Trace Elements in Mosses Hylocomium Splendens (Hedw.) Bsg and Pleurozium Schreberi (Brid.) Mitt. From Poland and Alaska,” Atmospheric Environment, Vol. 43, No. 7, 2009, pp. 1464-1473.

[109]   M. R. Turetsky, “The Role of Bryophytes in Carbon and Nitrogen Cycling,” The Bryologist, Vol. 106, No. 3, 2003, pp. 395-409.

[110]   P. M. Vitousek, S. Porder, B. Z. Houlton and O. A. Chadwick, “Terrestrial Phosphorus Limitation: Mechanisms, Implications, and Nitrogen–Phosphorus Interactions,” Ecological Applications, Vol. 20, No. 1, 2010, pp. 5-15.

[111]   J. H. C. Cornelissen, T. V. Callaghan, J. M. Alatalo, A. Michelsen, E. Graglia, A. E. Hartley, D. S. Hik, S. E. Hobbie, M. C. Press, C. H. Robinson, G. H. R. Henry, G. R. Shaver, G. K. Phoenix, D. Gwynn Jones, S. Jonasson, F. S. Chapin III, U. Molau, C. Neil, J. A. Lee, J. M. Melillo, B. Sveinbj?rnsson and R. Aerts “Global Change and Arctic Ecosystems: Is Lichen Decline a Function of Increases in Vascular Plant Biomass?” Journal of Ecology, Vol. 89, No. 6, 2004, pp. 984-994.

[112]   C. F. Dormann and S. J. Woodin, “Climate Change in the Arctic: Using Plant Functional Types in a Meta-Analysis of Field Experiments,” Functional Ecology, Vol. 16, No. 1, 2002, pp. 4-17.

[113]   S. Jonasson, M. Havstr?m, M. Jensen and T. V. Callaghan, “In Situ Mineralization of Nitrogen and Phosphorus of Arctic Soils after Perturbations Simulating Climate Change,” Oecologia, Vol. 95, No. 2, 1993, pp. 179-186.

[114]   R. Bobbink and J. G. M. Roelofs, “Nitrogen Critical Loads for Natural and Semi-Natural Ecosystems: The Empirical Approach,” Water, Air, & Soil Pollution, Vol. 85, No. 4, 1995, pp. 2413-2418.

[115]   R. Bobbink and L. P. M. Lamers, “Effects of Increased Nitrogen Deposition,” In: J. N. B. Bell and M. Treshow, Eds., Air Pollution and Plant Life, John Wiley & Sons, Ltd., New York, 2002, pp. 201-235.

[116]   J. T. Morris, “Effects of Nitrogen Loading on Wetland Ecosystems with Particular Reference to Atmospheric Deposition,” Annual Review of Ecology and Systematics, Vol. 22, No. 1, 1991, pp. 257-279.

[117]   J. N. Galloway, F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend and C. J. V?osmarty, “Nitrogen Cycles: Past, Present, and Future,” Biogeochemistry, Vol. 70, No. 2, 2004, pp. 153-226.

[118]   F. Berendse and R. Aerts, “Competition between Erica Tetralix L. And Molinia Caerulea (L.) Moench. As Affected by the Availability of Nutrients,” Acta Oecologia/Oecologia Plantarum, Vol. 5, No. 1, 1984, pp. 3-14.

[119]   M. C. Nilsson, D. A. Wardle, O. Zackrisson and A. J?derlund, “Effects of Alleviation of Ecological Stresses on an Alpine Tundra Community over an Eight-Year Period,” Oikos, Vol. 97, No. 1, 2002, pp. 3-17.

[120]   R. Bobbink, M. Hornung and J. G. M. Roelofs, “The Effects of Air-Borne Nitrogen Pollutants on Species Diversity in Natural and Semi-Natural European Vegetation,” Journal of Ecology, Vol. 86, No. 5, 2003, pp. 717-738.

[121]   C. E. Mitchell, P. B. Reich, D. Tilman and J. V. Groth, “Effects of Elevated CO2, Nitrogen Deposition, and De-creased Species Diversity on Foliar Fungal Plant Dis-ease,” Global Change Biology, Vol. 9, No. 3, 2003, pp. 438-451.

[122]   M. E. Fenn and M. A. Poth, “Monitoring Nitrogen Depo-sition in Throughfall Using Ion Exchange Resin Col-umns,” Journal of Environmental Quality, Vol. 33, No. 6, 2004, pp. 2007-2014.

[123]   W. G. Brumbaugh, S. Earhart, G. Linder and P. N. Neit-lich, “Determination of Annual Loads of Inorganic Atmospheric Contaminants in Northern Alaska by Measurement in Snowpack and Passive Ion Collectors. [Abstract W262],” In: Abstract Book, SETAC North America 33th Annual Meeting, 11-15 November 2012, SETAC, Long Beach, 2012, p. 354.

[124]   C. T. Allen, G. S. Young and S. E. Haupt, “Improving Pollutant Source Characterization by Better Estimating Wind Direction with a Genetic Algorithm,” Atmospheric Environment, Vol. 41, No. 11, 2007, pp. 2283-2289.

[125]   B. B. Hicks, “Planning for Air Quality Concerns of the Future,” Pure and Applied Geophysics, Vol. 160, No. 1-2, 2003, pp. 57-74.

[126]   C. J. Walters, “Adaptive Management of Renewable Resources,” Macmillan, New York, 1986.

[127]   C. J. Walters and R. Hilborn, “Ecological Optimization and Adaptive Management,” Annual Review of Ecology and Systematics, Vol. 9, 1978, pp. 157-188.

[128]   B. K. Williams, S. R. C. and S. C. D., “Adaptive Management: The US Department of the Interior Technical Guide,” US Department of the Interior, Adaptive Management Working Group, 2009.

[129]   R. Corell, P. Prestrud, G. Weller, P. A. Anderson, et al., “Impacts of a Warming Arctic-Arctic Climate Impact Assessment,” Cambridge University Press, Cambridge, 2004.

[130]   E. Post, M. C. Forchhammer, M. S. Bret-Harte, T. V. Callaghan, T. R. Christensen, B. Elberling, A. D. Fox, O. Gilg, D. S. Hik, T. T. H?ye, R. A. Ims, E. Jeppesen, D. R. Klein, J. Madsen, A. D. McGuire, S. Rysgaard, D. E. Schindler, I. Stirling, M. P. Tamstorf, N. J. Tyler, R. van der Wal, J. Welker, P. A. Wookey, N. M. Schmidt and P. Aastrup, “Ecological Dynamics across the Arctic Associated with Recent Climate Change,” Science, Vol. 325, No. 5946, 2009, pp. 1355-1358.

[131]   I. H. Myers-Smith, B. C Forbes, M. Wilmking, et al., “Shrub Expansion in Tundra Ecosystems: Dynamics, Impacts and Research Priorities,” Environmental Research Letters, Vol. 6, No. 4, 2011, Article ID: 045509.

[132]   K. Tape, M. Sturm and C. Racine, “The Evidence for Shrub Expansion in Northern Alaska and the Pan-Arctic,” Global Change Biology, Vol. 12, No. 4, 2006, pp. 686-702.

[133]   D. K. Swanson, “Three Decades of Landscape Change in Alaska’s Arctic National Parks: Analysis of Aerial Photographs, C. 1980-2010,” In: N. P. Service, Ed., Fort Collins, 2013.

[134]   K. Joly, R. R. Jandt and D. R. Klein, “Decrease of Lichens in Arctic Ecosystems: The Role of Wildfire, Caribou, Reindeer, Competition and Climate in North-Western Alaska,” Polar Research, Vol. 28, No. 3, 2009, pp. 433-442.

[135]   E. A. Holt and P. Neitlich, “Lichen Inventory Synthesis: Western Arctic National Parklands and Arctic Network, Alaska,” National Park Service, Fort Collins, 2010.

[136]   K. Joly, F. Stuart Chapin III and D. R. Klein, “Winter Habitat Selection by Caribou in Relation to Lichen Abundance, Wildfires, Grazing, and Landscape Characteristics in Northwest Alaska,” Ecoscience, Vol. 17, No. 3, 2010, pp. 321-333.

[137]   S. Makkonen, R. S. K. Hurri and M. Hyv?rinen, “Differential Responses of Lichen Symbionts to Enhanced Nitrogen and Phosphorus Availability: An Experiment with Cladina Stellaris,” Annals of Botany, Vol. 99, No. 5, 2007, pp. 877-884.

[138]   M. Kauppi, “The Influence of Nitrogen-Rich Pollution Components on Lichens,” Acta Universitatis Ouluensis, Seris A, Scientiaererum Naturalium, Biologica, Vol. 101, No. 9, 1980.

[139]   C. Racine, J. Allen and J. G. Dennis, “Long-Term Monitoring of Vegetation Change Following Tundra Fires in Noatak National Preserve, Alaska,” National Park Service, Arctic Network Inventory and Monitoring Program, report NPS/AKRARCN/NRTR-2006/02, 2006.

[140]   P. N. Neitlich, J. VerHoef, S. B. Berryman, A. Mines and L. H. Geiser, “Effects of Heavy Metal-Enriched Road Dust from the Red Dog Mine Haul Road on Tundra Vegetation in Cape Krusenstern National Monument, Alaska,” 2013. in press

[141]   J. Ford and L. Hasselbach, “Heavy Metals in Mosses and Soils on Six Transects Along the Red Dog Mine Haul Road Alaska,” Western Arctic National Parklands National Park Service, 2001.

[142]   L. Hasselbach, J. M. Ver Hoef, J. Ford, P. Neitlich, E. Crecelius, S. Berryman, B. Wolk and T. Bohle, “Spatial Patterns of Cadmium and Lead Deposition on and Adjacent to National Park Service Lands in the Vicinity of Red Dog Mine, Alaska,” Science of the Total Environment, Vol. 348, No. 1-3, 2005, pp. 211-230.

[143]   D. H. Landers, S. L. Simonich, D. A. Jaffe, L. H. Geiser, D. H. Campbell, A. R. Schwindt, C. B. Schreck, M. L. Kent, W. D. Hafner, H. E. Taylor, K. J. Hageman, S. Usenko, L. K. Ackerman, J. E. Schrlau, N. L. Rose, T. F. Blett and M. M. Erway, “The Fate, Transport, and Ecological Impacts of Airborne Contaminants in Western National Parks (USA); Epa/600/R-07/138,” In: US Environmental Protection Agency, Office of Research and Development, NHEERL, Western Ecology Division, Corvallis, 2008.

[144]   Arctic Monitoring and Assessment Program (AMAP), “Arctic Pollution Issues: A State of the Arctic Environment Report,” Arctic Monitoring and Assessment Programme (AMAP), Oslo, 2004.

[145]   Arctic Monitoring and Assessment Program (AMAP), “Arctic Pollution 2011,” Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2011, 38 p.

[146]   T. H. DeLuca, O. Zackrisson, M. C. Nilsson and A. Sellstedt, “Quantifying Nitrogen-Fixation in Feather Moss Carpets of Boreal Forests,” Nature, Vol. 419, No. 6910, 2002, pp. 917-920.