CellBio  Vol.2 No.4 , December 2013
Natural Antimicrobial Peptides: Pleiotropic Molecules in Host Defense
Abstract: Natural antimicrobial peptides (AMPs) are small cationic molecules that display antimicrobial activity against a wide range of bacteria, fungi and viruses. AMPs are multifunctional molecules that have an essential activity in infection and inflammation: they play an important role in the innate immune response, not only as antimicrobial agents, but also as immunomodulating molecules and as an important link between the innate and adaptive immune response. In this article, we will discuss the antimicrobial activity, together with the novel properties of some of these molecules as immune modulators on the innate and adaptive immune response.
Cite this paper: Leonor Sánchez, M. , María Belén Martínez, M. and César Maffia, P. (2013) Natural Antimicrobial Peptides: Pleiotropic Molecules in Host Defense. CellBio, 2, 200-210. doi: 10.4236/cellbio.2013.24023.

[1]   R. A. Dorschner, et al., “Cutaneous Injury Induces the Release of Cathelicidin Anti-Microbial Peptides Active against Group A Streptococcus,” Journal of Investigative Dermatology, Vol. 117, No. 1, 2001, pp. 91-97.

[2]   M. Zasloff, “Inducing Endogenous Antimicrobial Peptides to Battle Infections,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 24, 2006, pp. 8913-8914.

[3]   P. Elsbach, “What Is the Real Role of Antimicrobial Polypeptides That Can Mediate Several Other Inflammatory Responses?” Journal of Clinical Investigation, Vol. 111, No. 11, 2003, pp. 1643-1645.

[4]   D. Yang, et al., “Multiple Roles of Antimicrobial Defensins, Cathelicidins, and Eosinophil-Derived Neurotoxin in Host Defense,” Annual Review of Immunology, Vol. 22, 2004, pp. 181-215.

[5]   R. E. Hancock, “Cationic Peptides: Effectors in Innate Immunity and Novel Antimicrobials,” Lancet Infectious Diseases, Vol. 1, No. 3, 2001, pp. 156-164.

[6]   M. C. Territo, et al., “Monocyte-Chemotactic Activity of Defensins from Human Neutrophils,” Journal of Clinical Investigation, Vol. 84, No. 6, 1989, pp. 2017-2020.

[7]   O. Chertov, et al., “Identification of Defensin-1, Defensin-2, and CAP37/Azurocidin as T-Cell Chemoattractant Proteins Released from Interleukin-8-Stimulated Neutrophils,” Journal of Biological Chemistry, Vol. 271, No. 6, 1996, pp. 2935-2940.

[8]   D. M. Bowdish, et al., “The Human Cationic Peptide LL-37 Induces Activation of the Extracellular Signal-Regulated Kinase and p38 Kinase Pathways in Primary Human Monocytes,” Journal of Immunology, Vol. 172, No. 6, 2004, pp. 3758-3765.

[9]   J. Shi, et al., “A Novel Role for Defensins in Intestinal Homeostasis: Regulation of IL-1beta Secretion,” Journal of Immunology, Vol. 179, No. 2, 2007, pp. 1245-1253.

[10]   B. L. Kagan, T. Ganz and R. I. Lehrer, “Defensins: A Family of Antimicrobial and Cytotoxic Peptides,” Toxicology, Vol. 87, No. 1-3, 1994, pp. 131-149.

[11]   H. Jenssen, P. Hamill and R. E. Hancock, “Peptide Antimicrobial Agents,” Clinical Microbiology Reviews, Vol. 19, No. 3, 2006, pp. 491-511.

[12]   Y. Q. Tang, et al., “A Cyclic Antimicrobial Peptide Produced in Primate Leukocytes by the Ligation of Two Truncated Alpha-Defensins,” Science, Vol. 286, No. 5439, 1999, pp. 498-502.

[13]   A. Fahlgren, et al., “Increased Expression of Antimicrobial Peptides and Lysozyme in Colonic Epithelial Cells of Patients with Ulcerative Colitis,” Clinical & Experimental Immunology, Vol. 131, No. 1, 2003, pp. 90-101.

[14]   Y. Lai and R. L. Gallo, “AMPed up Immunity: How Antimicrobial Peptides Have Multiple Roles in Immune Defense,” Trends in Immunology, Vol. 30, No. 3, 2009, pp. 131-141.

[15]   D. Yang, et al., “Beta-Defensins: Linking Innate and Adaptive Immunity through Dendritic and T Cell CCR6,” Science, Vol. 286, No. 5439, 1999, pp. 525-528.

[16]   J. Harder, et al., “Differential Gene Induction of Human Beta-Defensins (hBD-1, -2, -3, and -4) in Keratinocytes Is Inhibited by Retinoic Acid,” Journal of Investigative Dermatology, Vol. 123, No. 3, 2004, pp. 522-529.

[17]   D. Proud, S. P. Sanders and S. Wiehler, “Human Rhinovirus Infection Induces Airway Epithelial Cell Production of Human Beta-Defensin 2 both in Vitro and in Vivo,” Journal of Immunology, Vol. 172, No. 7, 2004, pp. 4637-4645.

[18]   P. Vora, et al., “Beta-Defensin-2 Expression Is Regulated by TLR Signaling in Intestinal Epithelial Cells,” Journal of Immunology, Vol. 173, No. 9, 2004, pp. 5398-5405.

[19]   J. Harder, et al., “A Peptide Antibiotic from Human Skin,” Nature, Vol. 387, No. 6636, 1997, p. 861.

[20]   J. Yu, et al., “Host Defense Peptide LL-37, in Synergy with Inflammatory Mediator IL-1beta, Augments Immune Responses by Multiple Pathways,” Journal of Immunology, Vol. 179, No. 11, 2007, pp. 7684-7691.

[21]   Y. Zheng, et al., “Cathelicidin LL-37 Induces the Generation of Reactive Oxygen Species and Release of Human Alpha-Defensins from Neutrophils,” British Journal of Dermatology, Vol. 157, No. 6, 2007, pp. 1124-1131.

[22]   K. M. Aberg, et al., “Psychological Stress Downregulates Epidermal Antimicrobial Peptide Expression and Increases Severity of Cutaneous Infections in Mice,” Journal of Clinical Investigation, Vol. 117, No. 11, 2007, pp. 3339-3349.

[23]   J. J. Smith, et al., “Cystic Fibrosis Airway Epithelia Fail to Kill Bacteria Because of Abnormal Airway Surface Fluid,” Cell, Vol. 85, No. 2, 1996, pp. 229-236.

[24]   M. J. Goldman, et al., “Human Beta-Defensin-1 Is a Salt-Sensitive Antibiotic in Lung That Is Inactivated in Cystic Fibrosis,” Cell, Vol. 88, No. 4, 1997, pp. 553-560.

[25]   L. C. Huang, et al., “In Vitro Activity of Human Beta-Defensin 2 against Pseudomonas aeruginosa in the Presence of Tear Fluid,” Antimicrobial Agents and Chemotherapy, Vol. 51, No. 11, 2007, pp. 3853-3860.

[26]   R. I. Lehrer and T. Ganz, “Antimicrobial Peptides in Mammalian and Insect Host Defence,” Current Opinion in Immunology, Vol. 11, No. 1, 1999, pp. 23-27.

[27]   G. Morrison, et al., “Characterization of the Mouse Beta Defensin 1, Defb1, Mutant Mouse Model,” Infection and Immunity, Vol. 70, No. 6, 2002, pp. 3053-3060.

[28]   C. J. Kelly, et al., “Fundamental Role for HIF-1Alpha in Constitutive Expression of Human Beta Defensin-1,” Mucosal Immunology, Vol. 6, 2013, pp. 1110-1118.

[29]   H. Yu, et al., “The Novel Human Beta-Defensin 114 Regulates Lipopolysaccharide(LPS)-Mediated Inflammation and Protects Sperm from Motility Loss,” Journal of Biological Chemistry, Vol. 288, No. 17, 2013, pp. 12270-12282.

[30]   D. Yang, et al., “Mammalian Defensins in Immunity: More Than Just Microbicidal,” Trends in Immunology, Vol. 23, No. 6, 2002, pp. 291-296.

[31]   N. Funderburg, et al., “Human-Defensin-3 Activates Professional Antigen-Presenting Cells via Toll-Like Receptors 1 and 2,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 104, No. 47, 2007, pp. 18631-18635.

[32]   F. Niyonsaba, et al., “The Human Beta-Defensins (-1, -2, -3, -4) and Cathelicidin LL-37 Induce IL-18 Secretion through p38 and ERK MAPK Activation in Primary Human Keratinocytes,” Journal of Immunology, Vol. 175, No. 3, 2005, pp. 1776-1784.

[33]   J. W. Lillard, Jr., et al., “Mechanisms for Induction of Acquired Host Immunity by Neutrophil Peptide Defensins,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, No. 2, 1999, pp. 651-656.

[34]   A. Biragyn, et al., “Mediators of Innate Immunity that Target Immature, But Not Mature, Dendritic Cells Induce Antitumor Immunity When Genetically Fused with Nonimmunogenic Tumor Antigens,” Journal of Immunology, Vol. 167, No. 11, 2001, pp. 6644-6653.

[35]   K. Tani, et al., “Defensins Act as Potent Adjuvants That Promote Cellular and Humoral Immune Responses in Mice to a Lymphoma Idiotype and Carrier Antigens,” International Immunology, Vol. 12, No. 5, 2000, pp. 691- 700.

[36]   J. J. Oppenheim, A. Biragyn, L. W. Kwak and D. Yang, “Roles of Antimicrobial Peptides such as Defensins in Innate And Adaptive Immunity,” Annals of the Rheumatic Diseases, Vol. 62, Suppl. 2, 2003, pp. ii17-ii21.

[37]   K. A. Brogden, M. Heidari, R. E. Sacco, D. Palmquist, J. M. Guthmiller, G. K. Johnson, H. P. Jia, B. F. Tack and P. B. McCray Jr., “Defensin-Induced Adaptive Immunity in Mice And Its Potential in Preventing Periodontal Disease,” Oral Microbiology and Immunology, Vol. 18, No. 2, 2003, pp. 95-99.

[38]   J. K. Kolls, P. B. McCray Jr. and Y. R. Chan, “Cytokine-Mediated Regulation of Antimicrobial Proteins,” Nature Reviews. Immunology, Vol. 8, No. 11, 2008, pp. 829-835.

[39]   E. V. Acosta-Rodriguez, L. Rivino, J. Geginat, D. Jarrossay, M. Gattorno, A. Lanzavecchia, F. Sallusto and G. Napolitani, “Surface Phenotype and Antigenic Specificity of Human Interleukin 17-Producing T Helper Memory Cells,” Nature Immunology, Vol. 8, No. 6, 2007, pp. 639-646.

[40]   V. Sass, U. Paga, A. Tossib, G. Bierbaumc and H. G. Sahl, “Mode of Action of Human Beta-Defensin 3 against Staphylococcus aureus and Transcriptional Analysis of Responses to Defensin Challenge,” International Journal of Medical Microbiology, Vol. 298, No. 7-8, 2008, pp. 619-633.

[41]   J. F. Sanchez, F. Wojcik, Y.-S. Yang, M.-P. Strub, J. M. Strub, A. Van Dorsselaer, M. Martin, R. Lehrer, T. Ganz, A. Chavanieu, B. Calas and A. Aumelasa, “Overexpression and Structural Study of the Cathelicidin Motif of the Protegrin-3 Precursor,” Biochemistry, Vol. 41, No. 1, 2002, pp. 21-30.

[42]   U. H. Durr, U. S. Sudheendra and A. Ramamoorthy, “LL-37, the Only Human Member of the Cathelicidin family of Antimicrobial Peptides,” Biochimica et Biophysica Acta (BBA)—Biomembranes, Vol. 1758, No. 9, 2006, pp. 1408-1425.

[43]   K. Edfeldt, B. Agerberth, M. E. Rottenberg, G. H. Gudmundsson, X. B. Wang, K. Mandal, Q. B. Xu and Z. Q. Yan, “Involvement of the Antimicrobial Peptide LL-37 in Human Atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 26, No. 7, 2006, pp. 1551-1557.

[44]   S. Yim, P. Dhawan, C. Ragunath, S. Christakos and G. Diamond, “Induction of Cathelicidin in Normal and CF Bronchial Epithelial Cells by 1,25-Dihydroxyvitamin D3,” Journal of Cystic Fibrosis, Vol. 6, No. 6, 2007, pp. 403-410.

[45]   M. Behuliak, R. Pálffy, R. Gardlík, J. Hodosy, L. Halcák and P. Celec, “Variability of Thiobarbituric Acid Reacting Substances in Saliva,” Disease Markers, Vol. 26, No. 2, 2009, pp. 49-53.

[46]   M. Chromek, Z. Slamová, P. Bergman, L. Kovács, L. Podracká, I. Ehrén, T. Hokfelt, G. H Gudmundsson, R. L Gallo, B. Agerberth and A. Brauner, “The Antimicrobial Peptide Cathelicidin Protects the Urinary Tract against Invasive Bacterial Infection,” Nature Medicine, Vol. 12, No. 6, 2006, pp. 636-641.

[47]   M. Yoshioka, N. Fukuishi, Y. Kubo, H. Yamanobe, K. Ohsaki, Y. Kawasoe, M. Murata, A. Ishizumi, Y. Nishii, N. Matsui and M. Akagi, “Human Cathelicidin CAP18/LL-37 Changes Mast Cell Function toward Innate Immunity,” Biological and Pharmaceutical Bulletin, Vol. 31, No. 2, 2008, pp. 212-216.

[48]   G. S. Tjabringa, J. Aarbiou, D. K. Ninaber, J. W. Drijfhout, O. E. Sorensen, N. Borregaard, K. F. Rabe and P. S. Hiemstra, “The Antimicrobial Peptide LL-37 Activates Innate Immunity at the Airway Epithelial Surface by Transactivation of the Epidermal Growth Factor Receptor,” Journal of Immunology, Vol. 171, No. 12, 2003, pp. 6690-6696.

[49]   A. Nijnik and R. E. Hancock, “The Roles of Cathelicidin LL-37 in Immune Defences and Novel Clinical Applica- tions,” Current Opinion in Hematology, Vol. 16, No. 1, 2009, pp. 41-47.

[50]   D. J. Davidson, A. J. Currie, G. S. Reid, D. M. Bowdish, K. L. MacDonald, R. C. Ma, R. E. Hancock and D. P. Speert, “The Cationic Antimicrobial Peptide LL-37 Modulates Dendritic Cell Differentiation and Dendritic Cell-Induced T Cell Polarization,” Journal of Immunology, Vol. 172, No. 2, 2004, pp. 1146-1156.

[51]   K. Kandler, R. Shaykhiev, P. Kleemann, F. Klescz, M. Lohoff, C. Vogelmeier and R. Bals, “The Anti-Microbial Peptide LL-37 Inhibits the Activation of Dendritic Cells by TLR Ligands,” International Immunology, Vol. 18, No. 12, 2006, pp. 1729-1736.

[52]   M. Peric, S. Koglin, S. M. Kim, S. Morizane, R. Besch, J. C. Prinz, T. Ruzicka, R. L. Gallo and J. Schauber “IL-17A Enhances Vitamin D3-Induced Expression of Cathelicidin Antimicrobial Peptide in Human Keratinocytes,” Journal of Immunology, Vol. 181, No. 12, 2008, pp. 8504-8512.

[53]   Y. Rosenfeld, N. Papo and Y. Shai, “Endotoxin (Lipopoly-saccharide) Neutralization by Innate Immunity Host-Defense Peptides. Peptide Properties and Plausible Modes of Action,” The Journal of Biological Chemistry, Vol. 281, No. 3, 2006, pp. 1636-1643.

[54]   C. Junkes, R. D. Harvey, K. D. Bruce, R. Dolling, M. Bagheri and M. Dathe, “Cyclic Antimicrobial R-, W-Rich Peptides: The Role of Peptide Structure and E. coli Outer and Inner Membranes in Activity and the Mode of Action,” European Biophysics Journal, Vol. 40, No. 4. 2011, pp. 515-528.

[55]   P. N. Domadia, A. Bhunia, A. Ramamoorthy and S. Bhattacharjya, “Structure, Interactions, and AntiBacterial Activities of MSI-594 Derived Mutant Peptide MSI-594F5A in Lipopolysaccharide Micelles: Role of the Helical Hairpin Conformation in Outer-Membrane Permeabilization,” Journal of American Chemical Society, Vol. 132, No. 51, 2010, pp. 18417-18428.

[56]   M. R. Yeaman and N. Y. Yount, “Mechanisms of Antimicrobial Peptide Action and Resistance,” Pharmacological Reviews, Vol. 55, No. 1, 2003, pp. 27-55.

[57]   S. E. Williams, T. I. Brown, A. Roghanian and J. M. Sallenave, “SLPI and Elafin: One Glove, Many Fingers,” Clinical Science, Vol. 110, No. 1, 2006, pp. 21-35.

[58]   J. M. Sallenave, “Antimicrobial Activity of Antipro- teinases,” Biochemical Society Transactions, Vol. 30, No. 2, 2002, pp. 111-115.

[59]   S. A. Gomez, C. L. Argüelles, D. Guerrieri, N. L. Tateosian, N. O. Amiano, R. Slimovich, P. C. Maffia, E. Abbate, R. M. Musella, V. E. Garcia and H. E. Chuluyan, “Secretory Leukocyte Protease Inhibitor: A Secreted Pattern Recognition Receptor for Mycobacteria,” American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 3, 2009, pp. 247-253.

[60]   J. Nishimura, H. Saiga, S. Sato, M. Okuyama, H. Kayama, H. Kuwata, S. Matsumoto, T. Nishida, Y. Sawa, S. Akira, Y. Yoshikai, M. Yamamoto and K. Takeda, “Potent Antimycobacterial Activity of Mouse Secretory Leukocyte Protease Inhibitor,” Journal of Immunology, Vol. 180, No. 6, 2008, pp. 4032-4039.

[61]   C. Verma, S. Seebah, S. M. Low, L. Zhou, S. P. Liu, J. Li and R. W. Beuerman, “Defensins: Antimicrobial Peptides for Therapeutic Development,” Biotechnology Journal, Vol. 2, No. 11, 2007, pp. 1353-1359.

[62]   H. Saitoh, T. Masuda, S. Shimura, T. Fushimi and K. Shirato, “Secretion and Gene Expression of Secretory Leukocyte Protease Inhibitor by Human Airway Submucosal Glands,” American Journal of Physiology. Lung Cellular and Molecular Physiology, Vol. 280, No. 1, 2001, pp. L79-L87.

[63]   S. van Wetering, A. C. van der Linden, M. A. van Sterkenburg, K. F. Rabe, J. Schalkwijk and P. S. Hiemstra, “Regulation of Secretory Leukocyte Proteinase Inhibitor (SLPI) Production by Human Bronchial Epithelial Cells: Increase of Cell-Associated SLPI by Neutrophil Elastase,” Journal of Investigative Medicine,. Vol. 48, No. 5, 2000, pp. 359-366.

[64]   B. L. Luo, R. C. Niu, J. T. Feng, C. P. Hu, X. Y. Xie and L. J. Ma, “Downregulation of Secretory Leukocyte Proteinase Inhibitor in Chronic Obstructive Lung Disease: The Role of TGF-beta/Smads Signaling Pathways,” Archives of Medical Research, Vol. 39, No. 4, 2008, pp. 388-396.

[65]   Y. Higashimoto, Y. Yamagata, T. Iwata, T. Ishiguchi, M. Okada, M. Masuda, H. Satoh and H. Itoh, “Adenoviral E1A Suppresses Secretory Leukoprotease Inhibitor and Elafin Secretion in Human Alveolar Epithelial Cells and Bronchial Epithelial Cells,” Respiration, Vol. 72, No. 6, 2005, pp. 629-635.

[66]   F. Jaumann, A. Elssner, G. Mazur, S. Dobmann and C. Vogelmeier, “Transforming Growth Factor-Beta1 Is a Potent Inhibitor of Secretory Leukoprotease Inhibitor ex-Pression in a Bronchial Epithelial Cell Line. Munich Lung Transplant Group,” European Respiratory Journal, Vol. 15, No. 6, 2000, pp. 1052-1057.

[67]   A. H. Ding, H. W. Yu, J. X. Yang, S. P. Shi and S. Ehrt, “Induction of Macrophage-Derived SLPI by Mycobacterium Tuberculosis Depends on TLR2 but Not MyD88,” Immunology, Vol. 116, No. 3, 2005, pp. 381-389.

[68]   M. L. Zani, A. Tanga, A. Saidi, H. Serrano, S. Dallet-Choisy, K. Baranger and T. Moreau, “SLPI and Trappin-2 as Therapeutic Agents to Target Airway Serine Proteases in Inflammatory Lung Diseases: Current and Future Directions,” Biochemical Society Transactions, Vol. 39, No. 5, 2011, pp. 1441-1446.

[69]   A. L. Jendeberg, K. Stralin and O. Hultgren, “Antimicrobial Peptide Plasma Concentrations in Patients with Community-Acquired Pneumonia,” Scandinavian Journal of Infectious Diseases, Vol. 45, No. 6, 2013, pp. 432-437.

[70]   P. Mallia, et al., “Rhinovirus Infection Induces Degradation of Antimicrobial Peptides and Secondary Bacterial Infection in Chronic Obstructive Pulmonary Disease,” American Journal of Respiratory and Critical Care Medicine, Vol. 186, No. 11, 2012, pp. 1117-1124.

[71]   T. Moreau, K. Baranger, S. Dadé, S. Dallet-Choisy, N. Guyot and M. L. Zan, “Multifaceted Roles of Human Elafin and Secretory Leukocyte Proteinase Inhibitor (SLPI), Two Serine Protease Inhibitors of the Chelonianin Family,” Biochimie, Vol. 90, No. 2, 2008, pp. 284-295.

[72]   S. Weldon and C. C. Taggart, “Innate Host Defense Functions of Secretory Leucoprotease Inhibitor,” Experimental Lung Research, Vol. 33, No. 10, 2007, pp. 485-491.

[73]   J. X. Yang, J. Zhu, D. X. Sun and A. H. Ding, “Suppression of Macrophage Responses to Bacterial Lipopolysaccharide (LPS) by Secretory Leukocyte Protease Inhibitor (SLPI) Is Independent of Its Anti-Protease Function,” Biochimica et Biophysica Acta, Vol. 1745, No. 3, 2005, pp. 310-317.

[74]   F. Jin, C. F. Nathan, D. Radzioch and A. Ding, “Lipopolysaccharide-Related Stimuli Induce Expression of the Secretory Leukocyte Protease Inhibitor, a Macrophage-Derived Lipopolysaccharide Inhibitor,” Infection and Immunity, Vol. 66, No. 6, 1998, pp. 2447-2452.

[75]   A. B. Lentsch, J. A Jordan, B. J. Czermak, K. M. Diehl, E. M. Younkin, V. Sarma and P. A. Ward, “Inhibition of NF-kappaB Activation and Augmentation of IkappaBbeta by Secretory Leukocyte Protease Inhibitor during Lung Inflammation,” The American Journal of Pathology, Vol. 154, No. 1, 1999, pp. 239-247.

[76]   C. C. Taggart, S. A. Cryan, S. Weldon, A. Gibbons, C. M. Greene, E. Kelly, T. B. Low, S. J. O’Neill and N. G. McElvaney, “Secretory Leucoprotease Inhibitor Binds to NF-kappaB Binding Sites in Monocytes and InHibits p65 Binding,” The Journal of Experimental Medicine, Vol. 202, No. 12, 2005, pp. 1659-1668.

[77]   G. S. Ashcroft, K. J. Lei, W. W. Jin, G. Longenecker, A. B. Kulkarni, T. Greenwell-Wild, H. Hale-Donze1, G. McGrady, X. Y. Song and S. M. Wahl, “Secretory Leukocyte Protease Inhibitor Mediates Non-Redundant Functions Necessary for Normal Wound Healing,” Nature Medicine, Vol. 6, No.10, 2000, pp. 1147-1153.

[78]   J. N. Samsom, A. P. van der Marel, L. A. van Berkel, J. M. van Helvoort, Y. Simons-Oosterhuis, W. Jansen, M. Greuter, R. L. Nelissen, C. M. Meeuwisse, E. E. Nieuwenhuis, R. E. Mebius and G. Kraal, “Secretory Leuko-protease Inhibitor in Mucosal Lymph Node Dendritic Cells Regulates the Threshold for Mucosal Tolerance,” Journal of Immunology, Vol. 179, No. 10, 2007, pp. 6588-6595.

[79]   W. Xu, A. Chiu, A. Chadburn, M. Shan, M. Buldys, A. Ding, D. M. Knowles, P. A. Santini and A. Cerutti, “Epithelial Cells Trigger Frontline Immunoglobulin Class Switching through a Pathway Regulated by the Inhibitor SLPI,” Nature Immunology, Vol. 8, No. 3, 2007, pp. 294- 303.

[80]   A. Nakamura, Y. Mori, K. Hagiwara, T. Suzuki, T. Sakakibara, T. Kikuchi, T. Igarashi, M. Ebina, T. Abe, J. Miyazaki, T. Takai and T. Nukiwa, “Increased Susceptibility to LPS-Induced Endotoxin Shock in Secretory Leukoprotease Inhibitor (SLPI)-Deficient Mice,” Journal of Experimental Medicine, Vol. 197, No. 5, 2003, pp. 669-674.

[81]   A. Roghanian, S. E. Williams, T. A. Sheldrake, T. I. Brown, K. Oberheim, Z. Xing, S. E. M. Howie and J. M. Sallenave, “The Antimicrobial/Elastase Inhibitor Elafin Regulates Lung Dendritic Cells and Adaptive Immunity,” American Journal of Respiratory Cell and Molecular Biology, Vol. 34, No. 5, 2006, pp. 634-642.

[82]   Y. Zhang, D. L. DeWitt, T. B. McNeely, S. M. Wahl and L. M. Wahl, “Secretory Leukocyte Protease Inhibitor Suppresses the Production of Monocyte Prostaglandin H Synthase-2, Prostaglandin E2, and Matrix Metalloproteinases,” Journal of Clinical Investigation, Vol. 99, No. 5, 1997, pp. 894-900.

[83]   X. Y. Song, Li. Zenga, W. W. Jina, J. Thompsona, D. E. Mizela, K. J. Leia, R. C. Billinghurstb, A. R. Pooleb and S. M. Wahl, “Secretory Leukocyte Protease Inhibitor Suppresses the Inflammation and Joint Damage of Bacterial Cell Wall-Induced Arthritis,” Journal of Experimental Medicine, Vol. 190, No. 4, 1999, pp. 535-542.

[84]   J. Zhu, C. Nathan, W. W. Jin, D. Sim, G. S. Ashcroft, S. M. Wahl, L. Lacomis, H. Erdjument-Bromage, P. Tempst, C. D. Wright and A. H. Ding, “Conversion of Proepi- thelin to Epithelins: Roles of SLPI and Elastase in Host Defense and Wound Repair,” Cell, Vol. 111, No. 6, 2002, pp. 867-878.

[85]   N. Angelov, N. Moutsopoulos, M. J. Jeong, S. Nares, G. Ashcroft and S. M. Wahl, “Aberrant Mucosal Wound Repair in the Absence of Secretory Leukocyte Protease Inhibitor,” Thrombosis and Haemostasis, Vol. 92, No. 2, 2004, pp. 288-297.

[86]   E. Fakioglu, S. S. Wilson, P. M. M. Mesquita, E. Hazrati1, N. Cheshenko, J. A. Blaho and B. C. Herold, “Herpes Simplex Virus Downregulates Secretory Leukocyte Protease Inhibitor: A Novel Immune Evasion Mechanism,” Journal of Virology, Vol. 82, No. 19, 2008, pp. 9337-9344.

[87]   M. Hoffmann, E. S. Quabius, S. Tribius, L. Hebebrand, T. Gorogh, G. Halec, T. Kahn, J. Hedderich, C. Rocken, J. Haag, T. Waterboer, M. Schmitt, A. R. Giuliano and W. M. Kast, “Human Papillomavirus Infection in Head and Neck Cancer: The Role of the Secretory Leukocyte Protease Inhibitor,” Oncology Reports, Vol. 29, No. 5, 2013, pp. 1962-1968.

[88]   J. S. Huppert, B. Huang, C. Chen, H. Y. Dawood and R. N. Fichorova, “Clinical Evidence for the Role of Trichomonas Vaginalis in Regulation of Secretory Leukocyte Protease Inhibitor in the Female Genital Tract,” The Journal of Infectious Diseases, Vol. 207, No. 9, 2013, pp. 1462-1470.

[89]   T. B. McNeely, D. C. Shugars, M. Rosendahl, C. Tucker, S. P. Eisenberg and S. M. Wahl, “Inhibition Of Human Immunodeficiency Virus Type 1 Infectivity by Secretory Leukocyte Protease Inhibitor Occurs Prior to Viral Reverse Transcription,” Blood, Vol. 90, No. 3, 1997, pp. 1141-1149.

[90]   C. C. Tseng and C. P. Tseng, “Identification of a Novel Secretory Leukocyte Protease Inhibitor-Binding Protein Involved in Membrane Phospholipid Movement,” FEBS Letters, Vol. 475, No. 3, 2000, pp. 232-236.

[91]   G. Ma, T. Greenwell-Wild, K. J. Lei, W. W. Jin, J. Swisher, N. Hardegen, C. T. Wild and S. M. Wahl, “Secretory Leukocyte Protease Inhibitor Binds to Annexin II, a Cofactor for Macrophage HIV-1 Infection,” Journal of Experimental Medicine, Vol. 200, No. 10, 2004, pp. 1337-1346.

[92]   K. Pillay, A. Coutsoudis, A. K. Agadzi-Naqvi, L. Kuhn, H. M. Coovadia and E. N. Janoff, “Secretory Leukocyte Protease Inhibitor in Vaginal Fluids And Perinatal Human Immunodeficiency Virus Type 1 Transmission,” The Journal of Infectious Diseases, Vol. 183, No. 4, 2001, pp. 653-656.

[93]   S. M. Iqbal, et al., “Elevated Elafin/Trappin-2 in The Female Genital Tract Is Associated with Protection Against HIV Acquisition,” AIDS, Vol. 23, No. 13, 2009, pp. 1669-1677.

[94]   D. M. Waisman, “Annexin II Tetramer: Structure and Function,” Molecular and Cellular Biochemistry, Vol. 149-150, No. 1, 1995, pp. 301-322.

[95]   U. Rescher and V. Gerke, “S100A10/p11: Family, Friends and Functions,” Pflügers Archiv, Vol. 455, No. 4, 2008, pp. 575-582.

[96]   E. Pena-Alonso, et al., “Annexin A2 Localizes to the Basal Epithelial Layer and Is Down-Regulated in Dysplasia and Head and Neck Squamous Cell Carcinoma,” Cancer Letters, Vol. 263, No. 1, 2008, pp. 89-98.

[97]   A. W. Woodham, D. M. Da Silva, J. G. Skeate, A. B. Raff, M. R. Ambroso, H. E. Brand, J. M. Isas, R. Langen and W. M. Kast, “The S100A10 Subunit of the Annexin A2 Heterotetramer Facilitates L2-Mediated Human Papillomavirus Infection,” PLoS ONE, Vol. 7, No. 8, 2012, Article ID: e43519.

[98]   R. Medzhitov and C. A. Janeway Jr., “Decoding the Patterns of Self and Nonself by the Innate Immune System,” Science, Vol. 296, No. 5566, 2002. pp. 298-300.

[99]   T. Andrews and K. E. Sullivan, “Infections in Patients with Inherited Defects in Phagocytic Function,” Clinical Microbiology Reviews, Vol. 16, No. 4, 2003, pp. 597-621.