Back
 AJAC  Vol.4 No.12 , December 2013
Calculation of the Voigt Function in the Region of Very Small Values of the Parameter a Where the Calculation Is Notoriously Difficult
Abstract: The Voigt function is the convolution of a Lorentzian and a Guaussian density. The computation of these functions is required in several problems arising in a variety of physicochemical subjects; such as nuclear reactors, atmospheric transmittance and spectroscopy. In this work we suggest using a new formula for the calculation of the Voigt function. Our formula is a new integral representation for the Voigt function that gives the perfect results for the Voigt function calculation and is easily calculable. We give also a comparison between our results of calculation of Voigt function for the very small values of the parameter a, where the calculation is notoriously difficult, with those of the various algorithms of other authors.  
Cite this paper: H. Amamou, B. Ferhat and A. Bois, "Calculation of the Voigt Function in the Region of Very Small Values of the Parameter a Where the Calculation Is Notoriously Difficult," American Journal of Analytical Chemistry, Vol. 4 No. 12, 2013, pp. 725-731. doi: 10.4236/ajac.2013.412087.
References

[1]   Z. Shippony and W. G. Read, “A Correction to a Highly Accurate Voigt Function Algorithm,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 78, No. 2, 2003, pp. 255-255.
http://dx.doi.org/10.1016/S0022-4073(02)00169-3

[2]   M. R. Zaghloul and A. N. Ali, “Algorithm 916: Computing the Faddeyeva and Voigt Functions,” ACM Transactions on Mathematical Software, Vol. 38, No. 2, 2011, pp. 1-22. http://dx.doi.org/10.1145/2049673.2049679

[3]   J. He and Q. G. Zhang, “An Exact Calculation of the Voigt Spectral Line Profile in Spectroscopy,” Journal of Optics A: Pure and Applied Optics, Vol. 9, No. 7, 2007, pp. 565-568.
http://dx.doi.org/10.1088/1464-4258/9/7/003

[4]   S. M. Abrarov and B. M. Quine, “Efficient Algorithmic Implementation of the Voigt/Complex Error Function Based on Exponential Series Approximation,” Applied Mathematics and Computation, Vol. 218, No. 5, 2011, pp. 1894-1902. http://dx.doi.org/10.1016/j.amc.2011.06.072

[5]   F. Schreier, “Optimized Implementations of Rational Approximations for the Voigt and Complex Error Function,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 112, No. 6, 2011, pp. 1010-1025.
http://dx.doi.org/10.1016/j.jqsrt.2010.12.010

[6]   S. P. Limandri, R. D. Bonetto, H. O. Di Rocco and J. C. Trincavelli, “Fast and Accurate Expression for the Voigt Function. Application to the Determination of Uranium M Linewidths,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 63, No. 9, 2008, pp. 962-967.
http://dx.doi.org/10.1016/j.sab.2008.06.001

[7]   S. M. Abrarov, B. M. Quine and R. K. Jagpal, “A Simple Interpolating Algorithm for the Rapid and Accurate Calculation of the Voigt Function,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 110, No. 6-7, 2009, pp. 376-383.
http://dx.doi.org/10.1016/j.jqsrt.2009.01.003

[8]   M. R. Zaghloul, “On the Calculation of the Voigt Line Profile: A Single Proper Integral with a Damped Sine Integrand,” Monthly Notices of the Royal Astronomical Society, Vol. 375, No. 3, 2007, pp. 1043-1048.
http://dx.doi.org/10.1111/j.1365-2966.2006.11377.x

[9]   H. Amamou, A. Bois, M. Grimaldi and R. Redon, “Exact Analytical Formula for Voigt Function which Results from the Convolution of a Gaussian Profile and a Lorentzian Profile,” Physical Chemical News PCN, Vol. 43, 2008, pp. 1-6.

[10]   G. D. Roston and F. S. Obaid, “Exact Analytical Formula for Voigt Spectral Line Profile,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 94, No. 2, 2005, pp. 255-263. http://dx.doi.org/10.1016/j.jqsrt.2004.09.007

[11]   S. Van, “Comment on ‘Exact Analytical Formula for Voigt Spectral Line Profile’,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 95, No. 4, 2005, pp. 557-558. http://dx.doi.org/10.1016/j.jqsrt.2005.03.001

[12]   R. J. Wells, “Rapid Approximation to the Voigt/Faddeeva Function and Its Derivatives,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 62, No. 1, 1999, pp. 29-48.
http://dx.doi.org/10.1016/S0022-4073(97)00231-8

[13]   B. H. Armstrong, “Spectrum Line Profiles: The Voigt Unction,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 7, No. 1, 1967, pp. 61-88.
http://dx.doi.org/10.1016/0022-4073(67)90057-X

[14]   J. Humlicek, “Optimized Computation of the Voigt and Complex Probability Functions,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 27, No. 4, 1982, pp. 437-444.
http://dx.doi.org/10.1016/0022-4073(82)90078-4

[15]   J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: The Voigt Function and Its Derivatives,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 21, No. 4, 1978, pp. 309-313.
http://dx.doi.org/10.1016/0022-4073(79)90062-1

[16]   A. K. Hui, B. H. Armstrong and A. A. Wray, “Rapid Computation of the Voigt and Complex Error Functions,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 19, No. 5, 1978, pp. 509-516.
http://dx.doi.org/10.1016/0022-4073(78)90019-5

[17]   F. G. Lether and P. R. Wenston, “The Numerical Computation of the Voigt Function by a Corrected Midpoint Quadrature Rule for (-∞, ∞),” Journal of Computational and Applied Mathematics, Vol. 34, No. 1, 1991, pp. 75-92. http://dx.doi.org/10.1016/0377-0427(91)90149-E

[18]   A. B. McLean, C. E. J. Mitchell and D. M. Swanston, “Implementation of an Efficient Analytical Approximation to the Voigt Function for Photoemission Lineshape Analysis,” Journal of Electron Spectroscopy and Related Phenomena, Vol. 69, No. 2, 1994, pp. 125-132.
http://dx.doi.org/10.1016/0368-2048(94)02189-7

[19]   G. P. M. Poppe and C. M. J. Wijers, “More Efficient Computation of the Complex Error Function,” ACM Transactions on Mathematical Software (TOMS), Vol. 16, No. 1, 1990, pp. 38-46.
http://dx.doi.org/10.1145/77626.77629

 
 
Top