AM  Vol.4 No.12 , December 2013
Deterministic and Stochastic Schistosomiasis Models with General Incidence
ABSTRACT

In this paper, deterministic and stochastic models for schistosomiasis involving four sub-populations are developed. Conditions are given under which system exhibits thresholds behavior. The disease-free equilibrium is globally asymptotically stable if R0 < 1 and the unique endemic equilibrium is globally asymptotically stable when R0 > 1. The populations are computationally simulated under various conditions. Comparisons are made between the deterministic and the stochastic model.



Cite this paper
Ouaro, S. and Traoré, A. (2013) Deterministic and Stochastic Schistosomiasis Models with General Incidence. Applied Mathematics, 4, 1682-1693. doi: 10.4236/am.2013.412229.
References
[1]   World Health Organization, 2012.
http://www.who.int/schistosomiasis/en/

[2]   P. Jordan and G. Webbe, “Human Schistosomiasis,” Chales Thomas, Springfield, 1969.

[3]   P. L. Rosenfield, “The Management of Schistosomiasis,” Resources for the Future, Washington DC, 1979.

[4]   E. J. Allen and H. D. Victory, “Modelling and Simulation of a Schistosomiasis Infection with Biological Control,” Acta Tropica, Vol. 87, No. 2, 2003, pp. 251-267.
http://dx.doi.org/10.1016/S0001-706X(03)00065-2

[5]   R. M. Anderson and R. M. May, “Prevalence of Schistosome Infections within Molluscan Populations: Observed Patterns and Theoretical Predictions,” Parasitology, Vol. 79, No. 1, 1979, pp. 63-94.
http://dx.doi.org/10.1017/S0031182000051982

[6]   R. M. Anderson and R. M. May, “Helminth Infections of Humans: Mathematical Models, Population Dynamics, and Control,” Advances in Parasitology, Vol. 24, 1985, pp. 1-101.
http://dx.doi.org/10.1016/S0065-308X(08)60561-8

[7]   J. E. Cohen, “Mathematical Models of Schistosomiasis,” Annual Review of Ecology and Systematics, Vol. 8, 1977, pp. 209-233.
http://dx.doi.org/10.1146/annurev.es.08.110177.001233

[8]   Z. Feng, C. Li and F. A. Milner, “Schistosomiasis Models with Density Dependence and Age of Infection in Snail Dynamics,” Mathematical Biosciences, Vol. 177-178, 2002, pp. 271-286.

[9]   Z. Feng, C. Li and F. A. Milner, “Schistosomiasis Models with Two Migrating Human Groups,” Mathematical and Computer Modelling, Vol. 41, 2005, pp. 1213-1230.

[10]   Z. Feng and F. A. Milner, “A New Mathematical Model of Schistosomiasis,” In: Innovation Applied Mathematics, Vanderbilt University Press, Nashville, 1998, pp. 117128.

[11]   G. Macdonald, “The Dynamics of Helminth Infections, with Special Reference to Schistosomiasis,” Transactions of the Royal Society of Tropical Medicine and Hygiene, Vol. 59, No. 5, 1965, pp. 489-506.
http://dx.doi.org/10.1016/0035-9203(65)90152-5

[12]   I. Nasell, “A Hybrid Model of Schistosomiasis with Snail Latency,” Theoretical Population Biology, Vol. 10, No. 1, 1976, pp. 47-69.
http://dx.doi.org/10.1016/0040-5809(76)90005-8

[13]   M. E. J. Woolhouse, “On the Application of Mathematical Models of Schistosome Transmission Dynamics. I. Natural Transmission,” Acta Trop. 49, 1241-1270, (1991).
http://dx.doi.org/10.1016/0001-706X(91)90077-W

[14]   Woolhouse, M.E.J., On the application of mathematical models of schistosome transmission dynamics. II. Control. Acta Tropica, Vol. 50, 1992, pp. 189-204.
http://dx.doi.org/10.1016/0001-706X(92)90076-A

[15]   Y. Yang and D. Xiao, “A Mathematical Model with Delays for Schistosomiasis,” Chinese Annals of Mathematics, Vol. 31B, No. 4, 2010, pp. 433-446.
http://dx.doi.org/10.1007/s11401-010-0596-1

[16]   L. J. S. Allen, “An Introduction to Stochastic Processes with Applications to Biology,” Prentice-Hall, Englewood Cliffs, 2003.

[17]   T. C. Gard, “Introduction to Stochastic Differential Equations,” Marcel Dekker, New York, 1987.

[18]   J. M. Bony, “Principe du Maximum, Inégalité de Harnack et Unicité du Problème de Cauchy Pour les Opérateurs Elliptiques Dégénérés,” Annales de L’institut Fourier (Grenoble), Vol. 19, 1969, pp. 277-304.

[19]   G. Birkhoff and G. C. Rota, “Ordinary Differential Equations,” Ginn, Boston, 1982.

[20]   P. Van den Driesche and J. Watmough, “Reproduction Numbers and Subthreshold Endemic Equilibria for the Compartmental Models of Disease Transmission,” Mathematical Biosciences, Vol. 180, No. 1-2, 2002, pp. 2948. http://dx.doi.org/10.1016/S0025-5564(02)00108-6

[21]   V. Lakshmikantham, S. Leela, A. A. Martynyuk, “Stability Analysis of Nonlinear Systems,” Marcel Dekker, New York, 1989.

[22]   J. P. LaSalle, “The Stability of Dynamical Systems,” SIAM, Philadelphia, 1976.
http://dx.doi.org/10.1137/1.9781611970432

[23]   E. J. Allen, “Stochastic Differential Equations and Persistence Time of Two Interacting Populations,” Dynamics of Continuous, Discrete and Impulsive Systems, Vol. 5, 1999, pp. 271-281.

[24]   E. J. Allen, L. J. S. Allen, A. Arciniega and P. E. Greenwood, “Construction of an Equivalent Stochastic Differential Equation Models,” Stochastic Analysis and Applications, Vol. 26, No. 2, 2008, pp. 274-297.
http://dx.doi.org/10.1080/07362990701857129

[25]   E. J. Allen, J. Baglama and S. K. Boyd, “Numerical Approximation of the Product of the Square Root of a Matrix with a Vector,” Linear Algebra and Its Applications, Vol. 310, No. 1-3, 2000, pp. 167-181.
http://dx.doi.org/10.1016/S0024-3795(00)00068-9

[26]   Z. Feng, A. Eppert, F. A. Milner and D. J. Minchella, “Estimation of Paramaters Governing the Transmission Dynamics of Schistosomes,” Applied Mathematics Letters, Vol. 17, No. 10, 2004, pp. 1105-1112.
http://dx.doi.org/10.1016/j.aml.2004.02.002

 
 
Top