Back
 AM  Vol.4 No.12 , December 2013
Deterministic and Stochastic Schistosomiasis Models with General Incidence
Abstract: In this paper, deterministic and stochastic models for schistosomiasis involving four sub-populations are developed. Conditions are given under which system exhibits thresholds behavior. The disease-free equilibrium is globally asymptotically stable if R0 < 1 and the unique endemic equilibrium is globally asymptotically stable when R0 > 1. The populations are computationally simulated under various conditions. Comparisons are made between the deterministic and the stochastic model.
Cite this paper: Ouaro, S. and Traoré, A. (2013) Deterministic and Stochastic Schistosomiasis Models with General Incidence. Applied Mathematics, 4, 1682-1693. doi: 10.4236/am.2013.412229.
References

[1]   World Health Organization, 2012.
http://www.who.int/schistosomiasis/en/

[2]   P. Jordan and G. Webbe, “Human Schistosomiasis,” Chales Thomas, Springfield, 1969.

[3]   P. L. Rosenfield, “The Management of Schistosomiasis,” Resources for the Future, Washington DC, 1979.

[4]   E. J. Allen and H. D. Victory, “Modelling and Simulation of a Schistosomiasis Infection with Biological Control,” Acta Tropica, Vol. 87, No. 2, 2003, pp. 251-267.
http://dx.doi.org/10.1016/S0001-706X(03)00065-2

[5]   R. M. Anderson and R. M. May, “Prevalence of Schistosome Infections within Molluscan Populations: Observed Patterns and Theoretical Predictions,” Parasitology, Vol. 79, No. 1, 1979, pp. 63-94.
http://dx.doi.org/10.1017/S0031182000051982

[6]   R. M. Anderson and R. M. May, “Helminth Infections of Humans: Mathematical Models, Population Dynamics, and Control,” Advances in Parasitology, Vol. 24, 1985, pp. 1-101.
http://dx.doi.org/10.1016/S0065-308X(08)60561-8

[7]   J. E. Cohen, “Mathematical Models of Schistosomiasis,” Annual Review of Ecology and Systematics, Vol. 8, 1977, pp. 209-233.
http://dx.doi.org/10.1146/annurev.es.08.110177.001233

[8]   Z. Feng, C. Li and F. A. Milner, “Schistosomiasis Models with Density Dependence and Age of Infection in Snail Dynamics,” Mathematical Biosciences, Vol. 177-178, 2002, pp. 271-286.

[9]   Z. Feng, C. Li and F. A. Milner, “Schistosomiasis Models with Two Migrating Human Groups,” Mathematical and Computer Modelling, Vol. 41, 2005, pp. 1213-1230.

[10]   Z. Feng and F. A. Milner, “A New Mathematical Model of Schistosomiasis,” In: Innovation Applied Mathematics, Vanderbilt University Press, Nashville, 1998, pp. 117128.

[11]   G. Macdonald, “The Dynamics of Helminth Infections, with Special Reference to Schistosomiasis,” Transactions of the Royal Society of Tropical Medicine and Hygiene, Vol. 59, No. 5, 1965, pp. 489-506.
http://dx.doi.org/10.1016/0035-9203(65)90152-5

[12]   I. Nasell, “A Hybrid Model of Schistosomiasis with Snail Latency,” Theoretical Population Biology, Vol. 10, No. 1, 1976, pp. 47-69.
http://dx.doi.org/10.1016/0040-5809(76)90005-8

[13]   M. E. J. Woolhouse, “On the Application of Mathematical Models of Schistosome Transmission Dynamics. I. Natural Transmission,” Acta Trop. 49, 1241-1270, (1991).
http://dx.doi.org/10.1016/0001-706X(91)90077-W

[14]   Woolhouse, M.E.J., On the application of mathematical models of schistosome transmission dynamics. II. Control. Acta Tropica, Vol. 50, 1992, pp. 189-204.
http://dx.doi.org/10.1016/0001-706X(92)90076-A

[15]   Y. Yang and D. Xiao, “A Mathematical Model with Delays for Schistosomiasis,” Chinese Annals of Mathematics, Vol. 31B, No. 4, 2010, pp. 433-446.
http://dx.doi.org/10.1007/s11401-010-0596-1

[16]   L. J. S. Allen, “An Introduction to Stochastic Processes with Applications to Biology,” Prentice-Hall, Englewood Cliffs, 2003.

[17]   T. C. Gard, “Introduction to Stochastic Differential Equations,” Marcel Dekker, New York, 1987.

[18]   J. M. Bony, “Principe du Maximum, Inégalité de Harnack et Unicité du Problème de Cauchy Pour les Opérateurs Elliptiques Dégénérés,” Annales de L’institut Fourier (Grenoble), Vol. 19, 1969, pp. 277-304.

[19]   G. Birkhoff and G. C. Rota, “Ordinary Differential Equations,” Ginn, Boston, 1982.

[20]   P. Van den Driesche and J. Watmough, “Reproduction Numbers and Subthreshold Endemic Equilibria for the Compartmental Models of Disease Transmission,” Mathematical Biosciences, Vol. 180, No. 1-2, 2002, pp. 2948. http://dx.doi.org/10.1016/S0025-5564(02)00108-6

[21]   V. Lakshmikantham, S. Leela, A. A. Martynyuk, “Stability Analysis of Nonlinear Systems,” Marcel Dekker, New York, 1989.

[22]   J. P. LaSalle, “The Stability of Dynamical Systems,” SIAM, Philadelphia, 1976.
http://dx.doi.org/10.1137/1.9781611970432

[23]   E. J. Allen, “Stochastic Differential Equations and Persistence Time of Two Interacting Populations,” Dynamics of Continuous, Discrete and Impulsive Systems, Vol. 5, 1999, pp. 271-281.

[24]   E. J. Allen, L. J. S. Allen, A. Arciniega and P. E. Greenwood, “Construction of an Equivalent Stochastic Differential Equation Models,” Stochastic Analysis and Applications, Vol. 26, No. 2, 2008, pp. 274-297.
http://dx.doi.org/10.1080/07362990701857129

[25]   E. J. Allen, J. Baglama and S. K. Boyd, “Numerical Approximation of the Product of the Square Root of a Matrix with a Vector,” Linear Algebra and Its Applications, Vol. 310, No. 1-3, 2000, pp. 167-181.
http://dx.doi.org/10.1016/S0024-3795(00)00068-9

[26]   Z. Feng, A. Eppert, F. A. Milner and D. J. Minchella, “Estimation of Paramaters Governing the Transmission Dynamics of Schistosomes,” Applied Mathematics Letters, Vol. 17, No. 10, 2004, pp. 1105-1112.
http://dx.doi.org/10.1016/j.aml.2004.02.002

 
 
Top