[1] D. B. Marshall, B .N. Cox and A .G. Evens, “The Mechanics of Matrix Cracking in Brittle-Matrix Fiber Composites,” Acta Metallurgical, Vol. 33, No. 11, 1985, pp. 2013-2021. http://dx.doi.org/10.1016/0001-6160(85)90124-5
[2] B. Budiansky, J. W. Hutchinson and A. G. Evens, “Matrix Fracture in Fiber-Reinforced Ceramics,” Journal of the Mechanics and Physics of Solids. Vol. 34, No. 2, 1986, pp. 167-189.
http://dx.doi.org/10.1016/0022-5096(86)90035-9
[3] M. Ji and H. Ishikawa, “Analysis of an Internal Central Crack with Bridging Fibers in a Finite Orthotropic Plate,” International Journal of Engineering Science, Vol. 35, No. 4, 1997, pp. 549-560.
http://dx.doi.org/10.1016/S0020-7225(96)00099-7
[4] D. B. Marshall and B. N. Cox. “Tensile Fracture of Brittle Matrix Composites: Influence of Fiber Strength,” Acta Metallurgical, Vol. 35, No. 11, 1987, pp. 2607-2619.
http://dx.doi.org/10.1016/0001-6160(87)90260-4
[5] Z.-M. Wang, “Mechanics and Structural Mechanics of Composite Materials,” Publisher of Machinery Industry, Beijing, 1991.
[6] G.-L. Shen. “Mechanics of Composite Materials,” Tsinghua University Press, Beijing, 1996.
[7] C. W. Woo and Y. H. Wang, “Analysis of an Internal Crack in a Fine Anisotropic Plate,” International Journal of Fracture, Vol. 62, No. 2, 1993, pp. 203-208.
[8] J. C. Lee, “Analysis of Fiber Bridged Crack near a Free Surface in Ceramic Matrix Composites,” Engineering Fracture Mechanics, Vol. 37, No. 2, 1990, pp. 209-219.
http://dx.doi.org/10.1016/0013-7944(90)90344-G
[9] W. T. Tsai and I. R. Dharani, “Non Self-Similar Fiber Fracture in Unidirectional Composites,” Engineering Fracture Mechanics, Vol. 44, No. 1, 1993, pp. 43-49.
http://dx.doi.org/10.1016/0013-7944(93)90080-C
[10] W. N. Liu, “Stress Ahead of the Tip of a Finite-Width Center-Crack in Fiber-Reinforced Composite Specimens: Subjected to Non-Linearly Distributed Bridging Stresses,” International Journal of Fracture, Vol. 70, No. 1, 1994, pp. 31-35.
[11] K. Liao and K. Reifsnider, “A Tensile Strength Model for Unidirectional Fiber-Reinforced Brittle Matrix Composite,” International Journal of Fracture, Vol. 106, No. 1, 2000, pp. 95-115.
http://dx.doi.org/10.1023/A:1007645817753
[12] V. Tamuzs, S. Tarasovs and U. Vilks, “Progressive Delamination and Fibre Bridging Modeling in Double Cantilever Beam Composite Specimens,” Engineering Fracture Mechanics, Vol. 68, No. 5, 2001, pp. 513-525.
http://dx.doi.org/10.1016/S0013-7944(00)00131-4
[13] A. Piva and E. Viola, “Crack Propagation in an Orthotropic Media”, Engineering Fracture Mechanics, Vol. 29, No. 5, 1988, pp. 535-547.
http://dx.doi.org/10.1016/0013-7944(88)90179-8
[14] J. De and B. Patra, “Elastodynimic Crack Problems in An Orthotrpic Medium through Complex Variable Approach,” Engineering Fracture Mechanics, Vol. 41, No. 5, 1998, pp. 895-909.
[15] K. B. Broberg, “The Propagation of a Brittle Crack,” Arkve Fysik, Vol. 18, No. 2, 1960, pp. 159-192.
[16] Y. W. Craggs, “The Growth of a Disk-Shaped Crack,” International Journal of Engineering Science, Vol. 4, No. 2, 1966, pp. 113-124.
http://dx.doi.org/10.1016/0020-7225(66)90019-X
[17] J. G. Goree and R. S. Gross, “Analysis of a Unidirectional Composite Containing Broken Fibers and Matrix Damage,” Engineering Fracture Mechanics, Vol. 33, No. 3, 1979, pp. 555-578.
[18] G. P. Cherepanov and E. F. Afanasov, “Some Dynamic Problems of the Theory of Elasticity—A Review,” International Journal of Engineering Science, Vol. 12, No. 8, 1974, pp. 665-690.
http://dx.doi.org/10.1016/0020-7225(74)90043-3
[19] G. P. Charepanov, “Mechanics of Brittle Fracture,” Nauka, Moscow, 1973.
[20] C. Atkinson, “The Propagation of a Brittle Crack in Anistropic Material,” International Journal of Engineering Science, Vol. 3, No. 1, 1965, pp. 77-91.
http://dx.doi.org/10.1016/0020-7225(65)90021-2
[21] N.-C. Lü, X.-G. Li, Y.-H. Cheng and J. Cheng, “Fracture Dynamics Problem on Mode I Semi-Infinite Crack,” Archive of Applied Mechanics, Vol. 81, No. 9, 2011, pp. 1181-1193. http://dx.doi.org/10.1007/s00419-010-0476-x
[22] N. C. Lü, Y. H. Cheng. X. G. Li and J. Cheng, “Dynamic Propagation Problem of Mode I Semi-Infinite Crack Subjected to Superimpose Loads,” Fatigue & Fracture of Engineering Materials & Structures. Vol. 33, No. 3, 2010, pp. 141-148.
[23] N. C. Lü, Y. H. Cheng. X. G. Li and J. Cheng, “An Asymmetrical Dynamic Model for Bridging Fiber PullOut of Unidirectional Composite Materials,” Meccanica, Vol. 47, No. 5, 2012, pp. 1247-1260.
http://dx.doi.org/10.1007/s11012-011-9509-y
[24] N. I. Muskhlishvili, “Singular Integral Equations,” Nauka, Moscow, 1968.
[25] N. I. Muskhlishvili, “Some Fundamental Problems in the Mathematical Theory of Elasticity,” Nauka, Moscow, 1966.
[26] F. D. Gakhov, “Boundary-Value Problems,” Fitzmatigiz, Moscow, 1963.
[27] R. F. Hoskins, “Generalized Functions,” Ellis Horwood, Chichester, 1979.
[28] X. S. Wang, “Singular Functions and Their Applications in Mechanics,” Scientific Press, Beijing, 1993.
[29] G. C. Sih, “Mechanics of Fracture 4. Elastodynamics Crack Problems,” Noordhoff, Leyden, 1977.
[30] R. P. Kanwal and D. L. Sharma, “Singularity Methods for Eastostatics,” Journal of Elasticity, Vol. 6, No. 4, 1976, pp. 405-418. http://dx.doi.org/10.1007/BF00040900
[31] Editorial Group of Mathematics Handbook, “Mathematical Handbook,” Advanced Education Press, Beijing, 2002.
[32] Teaching Office of Mathematics of Tongji University. “Advanced Mathematics,” Advanced Education Press, Beijing, 1994.
[33] K. C. Wu, “Dynamic Crack Growth in Anisotropic Material,” International Journal of Fracture, Vol. 106, No. 1, 2000, pp. 1-12.
http://dx.doi.org/10.1023/A:1007621500585
[34] X.-G. Li, Y.-H. Cheng, N.-C. Lv, G.-D. Hao and J. Cheng, “A Dynamic Asymmetrical Crack Model of Bridging Fiber Pull-Out in Unidirectional Composite Materials,” Journal of Mechanical Science and Technology, Vol. 25, No. 9, 2011, pp. 2297-2309.
http://dx.doi.org/10.1007/s12206-011-0526-5
[35] N. C. Lv, Y. H. Cheng. H. L. Si and J. Cheng, “Dynamics of Asymmetrical Crack Propagation in Composite Materials,” Theoretical and Applied Fracture Mechanics, Vol. 47, No. 3, 2007, pp. 260-273.
http://dx.doi.org/10.1016/j.tafmec.2007.01.004
[36] N. C. Lü, Y. H. Cheng and J. Cheng, “Mode I Crack Tips Propagating at Different Speeds under Differential Surface Tractions,” Theoretical and Applied Fracture Mechanics, Vol. 46, No. 3, 2006, pp. 262-275.
http://dx.doi.org/10.1016/j.tafmec.2006.09.004
[37] A. S. Kobayashi, “Dynamic Fracture Analysis by Dynamic Finite Element Method. Generation and Prediction Analyses,” In: Nonlinear and Dynarnic Fracture Mechanics, American Society of Mechanical Engineers, New York, 1979, pp. 19-36.
[38] K. Ravi-Chandar and W. G. Knauss, “An Experimental Investigation into Dynamic Fracture: Part 1, Crack Initiation and Arrest,” International Journal of Fracture, Vol. 25, No. 41, 1984, pp. 247-262.
http://dx.doi.org/10.1007/BF00963460
[39] K. Ravi-Chandar and W. G. Knauss, “An Experimental Investigation into Dynamic Fracture: Part 2, Microstructural Aspects,” International Journal of Fracture, Vol. 26, No. 11, 1984, pp. 65-80.
http://dx.doi.org/10.1007/BF01152313
[40] K. Ravi-Chandar and W. G. Knauss, “An Experimental Investigation into Dynamic Fracture: Part 3, on SteadyState Crack Propagation and Crack Branching,” International Journal of Fracture, Vol. 26, No. 2, 1984, pp. 141152. http://dx.doi.org/10.1007/BF01157550
[41] L. A. Galin, “Contact Problems in Elasticity Theory,” GITTL, Moscow, 1953.