A Novel Symbolic Algorithm for Maximum Weighted Matching in Bipartite Graphs

References

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, “Network Flows: Theory, Algorithms, and Applications,” Pearson Education Inc., Prentice Hall, Englewood Cliffs, 1993.

[2] Z. Galil, “Efficient Algorithm for Finding Maximum Matching in Graphs,” *ACM Computing Surveys*, Vol. 18, No. 1, 1986, pp. 23-37. doi:10.1145/6462.6502

[3] H. W. Kuhn, “The Hungarian Method for Assignment Problem,” *Naval Research Logistics Quarterly*, Vol. 2, No. 1-2, 1955, pp. 83-97. doi:10.1002/nav.3800020109

[4] J. Munkres, “Algorithms for Assignment and Transportation Problems,” *Journal of SIAM*, Vol. 5, No. 1, 1957, pp. 32-38.

[5] H. N. Gabow and R. E. Tarjan, “Faster Scaling Algorithms for Network Problems,” *SIAM Journal on Computing*, Vol. 18, No. 5, 1989, pp. 1013-1036. doi:10.1137/0218069

[6] A. V. Goldberg, S. A. Plotkin and P. M. Vaidya, “Sublinear Time Parallel Algorithms for Matching and Related Problems,” *Journal of Algorithms*, Vol. 14, No. 2, 1993, pp. 180-213. doi:10.1006/jagm.1993.1009

[7] J. B. Orlin and R. K. Ahuja, “New Scaling Algorithms for the Assignment and Minimum Cycle Mean Problems,” Sloan Working Paper 2019-88, Solan School of Management, Massachusetts Institute of Technology, Cambridge, 1988.

[8] A. V. Goldberg and R. Kennedy, “An Efficient Cost Scaling Algorithm for the Assignment Problem,” *Mathematical Programming*, Vol. 71, No. 2, 1995, pp. 153-178. doi:10.1007/BF01585996

[9] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” *IEEE Transactions on Computer*, Vol. 35, No. 8, 1986, pp. 677-691. doi:10.1109/TC.1986.1676819

[10] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams,” *ACM Computing Surveys*, Vol. 24, No. 3, 1992, pp. 293-318. doi:10.1145/136035.136043

[11] S. B. Akers, “Binary Decision Diagrams,” *IEEE Transactions on Computer*, Vol. 27, No. 6, 1978, pp. 509-516. doi:10.1109/TC.1978.1675141

[12] D. Sieling and R. Drechsler, “Reduction of OBDDs in Linear Time,” *Information Processing Letters*, Vol. 48, No. 3, 1993, pp. 139-144. doi:10.1016/0020-0190(93)90256-9

[13] D. Sieling and I. Wegener, “Graph Driven BDDs: A New Data Structure for Boolean Functions,” *Theoretical Computer Science*, Vol. 141, No. 1-2, 1995, pp. 283-310. doi:10.1016/0304-3975(94)00078-W

[14] G. D. Hachtel and F. Somenzi, “A Symbolic Algorithm for Maximum Flow in 0-1 Networks,” *Formal Methods in System Design*, Vol. 10, No. 2-3, 1997, pp. 207-219. doi:10.1023/A:1008651924240

[15] R. I. Bahar, E. A. Frohm, C. M. Gaona, et al. “Algebraic Decision Diagrams and Their Applications,” *Formal Methods in Systems Design*, Vol. 10, No. 2-3, 1997, pp. 171-206. doi:10.1023/A:1008699807402

[16] T. L. Gu and Z. B. Xu, “The Symbolic Algorithms for Maximum Flow in Networks,” *Computers & Operations Research*, Vol. 34, No. 2, 2007, pp. 799-816. doi:10.1016/j.cor.2005.05.009

[17] F. Somenzi, “CUDD: CU Decision Diagram Package Release 2.3.1,” 2006. http://vlsi.Colorado.edu/

[18] The LEDA User Manual, 2010. http://www.algorithmic-solutions.com