Back
 JQIS  Vol.3 No.4 , December 2013
From Yang-Mills Photon in Curved Spacetime to Dark Energy Density
Abstract: We start from quantum field theory in curved spacetime to derive a new Einstein-like energy mass relation of the type E=γmc2 where γ=1/22 is a Yang-Mills Lorentzian factor, m is the mass and c is the velocity of light. Although quantum field in curved spacetime is not a complete quantum gravity theory, our prediction here of 95.4545% dark energy missing in the cosmos is almost in complete agreement with the WMAP and supernova measurements. Finally, it is concluded that the WMAP and type 1a supernova 4.5% measured energy is the ordinary energy density of the quantum particle while the 95.5% missing dark energy is the energy density of the quantum wave. Recalling that measurement leads to quantum wave collapse, it follows that dark energy as given by E(D) = mc2 (21/22) cannot be detected using conventional direct measurement although its antigravity effect is manifested through the increasing rather than decreasing speed of cosmic expansion.
Cite this paper: M. Naschie, "From Yang-Mills Photon in Curved Spacetime to Dark Energy Density," Journal of Quantum Information Science, Vol. 3 No. 4, 2013, pp. 121-126. doi: 10.4236/jqis.2013.34016.
References

[1]   L. Amendola and S. Tsujikawa, “Dark Energy: Theory and Observations,” Cambridge University Press, Cambridge, 2010.
http://dx.doi.org/10.1017/CBO9780511750823

[2]   N. D. Birrell and P. C. Davies, “Quantum Fields in Curved Space,” Cambridge University Press, Cambridge, 1994.

[3]   R. Wald, “Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics,” The University of Chicago Press, Chicago, 1994.

[4]   G. ‘t Hooft, “50 Years of Yang-Mills Theory,” World Scientific, Singapore, 2005.
http://dx.doi.org/10.1142/5601

[5]   G. ‘t Hooft, “Under the Spell of Gauge Principle,” World Scientific, Singapore, 1994.

[6]   D. Oriti, “Quantum Gravity,” Cambridge University Press, Cambridge, 2009.

[7]   R. Penrose, “The Road to Reality,” Jonathan Cape, London, 2004.

[8]   L. Nottale, “Scale Relativity,” Imperial College Press, London, 2011.

[9]   L. Marek-Crnjac, et al., “Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology,” IJMNTA, Vol. 2, No. 1A, 2013, pp. 78-88.

[10]   J. H. He and L. Marek-Crnjac, “Mohamed El Naschie’s Revision of Albert Einstein’s E = mc2: A Definite Resolution of the Mystery of the Missing Dark Energy of the Cosmos,” IJMNTA, No. 1, 2013, pp. 55-59.

[11]   L. Marek-Crnjac, “Modification of Einstein’s E = mc2 to E = mc2/22,” American Journal of Modern Physics, Vol. 2, No. 5, 2013, pp. 255-263.

[12]   M. S. El Naschie, “The Quantum Gravity Immirzi Parameter— A General Physical and Topological Interpretation,” Gravitation and Cosmology, Vol. 19, No. 3, 2013, pp. 151-155.
http://dx.doi.org/10.1134/S0202289313030031

[13]   M. S. El Naschie, “What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse,” International Journal of Astronomy & Astrophysics, Vol. 3, No. 3, 2013, pp. 205-211.
http://dx.doi.org/10.4236/ijaa.2013.33024

[14]   M. S. El Naschie, “Dark Energy from Kaluza-Klein Spacetime and Noether’s Theorem via Lagrangian Multiplier Method,” Journal of Modern Physics, Vol. 4, No. 6, 2013, pp. 757-760. http://dx.doi.org/10.4236/jmp.2013.46103

[15]   M. S. El Naschie and A. Helal, “Dark Energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography,” International Journal of Astronomy and Astrophysics, Vol. 3, No. 3, 2013, pp. 318-343.

[16]   S. Weinberg, “Cosmology,” Oxford University Press, Oxford, 2008.

[17]   M. S. El Naschie, “On the Unification of the Fundamental Forces and Complex Time in E-Infinity Space,” Chaos, Solitons & Fractals, Vol. 11, No. 7, 2000, pp. 1149-1162.
http://dx.doi.org/10.1016/S0960-0779(99)00185-X

[18]   M. S. El Naschie, “Transfinite Neoimpressionistic Reality of Quantum Spacetime,” New Advances in Physics, Vol. 1, No. 2, 2007, pp. 111-122.

[19]   M. S. El Naschie, “On the Uncertainty of Cantorian Geometry and the Two-Slit Experiment,” Chaos, Solitons & Fractals, Vol. 9, No. 3, 1998, pp. 517-529.
http://dx.doi.org/10.1016/S0960-0779(97)00150-1

[20]   M. S. El Naschie, “Gravitational Instanton in Hilbert Space and the Mass of High Energy Elementary Particles,” Chaos, Solitons & Fractals, Vol. 20, No. 5, 2004, pp. 917-923.
http://dx.doi.org/10.1016/j.chaos.2003.11.001

[21]   M. S. El Naschie, “How Gravitational Instanton Could Solve the Mass Problem of the Standard Model of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 21, No. 1, 2004, p. 249-260.
http://dx.doi.org/10.1016/j.chaos.2003.12.001

[22]   M. S. El Naschie, “Topological Defects in the Symplictic Vacuum, Anomalous Positron Production and the Gravitational Instanton,” International Journal of Modern Physics E, Vol. 13, No. 4, 2004, pp. 835-849.
http://dx.doi.org/10.1142/S0218301304002429

[23]   G. ‘t Hooft, “A Physical Interpretation of Gravitational Instantons,” Nuclear Physics B, Vol. 315, No. 2, 1989, pp. 577-527.

[24]   L. Marek-Crnjac, “On the Unification of All Fundamental Forces in a Fundamentally Fuzzy Cantorian E-Infinity Manifold and High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 20, No. 4, 2004, pp. 669-682.
http://dx.doi.org/10.1016/j.chaos.2003.10.013

[25]   M. Pusey, J. Barrett and T. Randolph, “On the Reality of Quantum State,” Nature Physics, Vol. 8, 2012, pp. 475-478.

[26]   M. S. El Naschie, “Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrödinger Quantum Wave,” Journal of Modern Physics, Vol. 4, No. 5, 2013, pp. 591-596.
http://dx.doi.org/10.4236/jmp.2013.45084

[27]   M. S. El Naschie, “Quantum Entanglement: Where Dark Energy and Negative Gravity Plus Accelerated Expansion of the Universe Comes from,” Journal of Quantum Information Science, Vol. 3, 2013, pp. 57-77.
http://dx.doi.org/10.4236/jqis.2013.32011

[28]   M. S. El Naschie, “A Resolution of the Cosmic Dark Energy via a Quantum Entanglement Relativity Theory,” Journal of Quantum Information Science, Vol. 3, No. 1, 2013, pp. 23-26.
http://dx.doi.org/10.4236/jqis.2013.31006

 
 
Top