JAMP  Vol.1 No.6 , November 2013
On the Average Errors of Multivariate Lagrange Interpolation
Abstract: In this paper, we discuss the average errors of multivariate Lagrange interpolation based on the Chebyshev nodes of the first kind. The average errors of the interpolation sequence are determined on the multivariate Wiener space.
Cite this paper: Zhang, Z. and Jiang, Y. (2013) On the Average Errors of Multivariate Lagrange Interpolation. Journal of Applied Mathematics and Physics, 1, 1-5. doi: 10.4236/jamp.2013.16001.

[1]   K. Ritter, “Average-Case Analysis of Numerical Problems,” Springer-Verlag Berlin Heidelberg, New York, 2000.

[2]   G. Q. Xu, “The Average Errors for Lagrange Interpolation and Hermite-Feje’r Interpolation on the Wiener Space (in Chinese),” Acta Mathematica Sinica, Vol. 50, No. 6, 2007, pp. 1281-1296.

[3]   A. Papageorgiou and G. W. Wasilkowski, “On the Average Complexity of Multivariate Problems,” Journal of Complexity, Vol. 6, No. 1, 1990, pp. 1-23.