ANP  Vol.2 No.4 , November 2013
Synthesis and Characterization of Carbon Conditioned with Iron Nanoparticles Using Pineapple-Peel
ABSTRACT

This paper presents the preparation of carbon conditioned with iron nanoparticles (CI) using a pineapple peel treated with iron salts, carboxymethylcellulose sodium and hexamine. First, the pineapple peel was analyzed by thermo gravimetric analysis (TGA) to determine the optimal temperature for pyrolysis. The formation of carbon conditioned by iron nanoparticles was studied as a function of time at 30 min, 60 min, 90 min, 120 min, 150 min and 180 min. Scanning electron microscopy (SEM) was used to identify changes in the morphology of the materials. The specific area of each material was obtained by the BET method. The elemental composition of pineapple-peel (PP), washed pineapple-peel (WPP) and carbon iron (CI), was determined by neutron activation analysis (NAA). The results show that the optimal time for obtaining spherical iron nanoparticles with a diameter between 10 nm and 30 nm is 180 min on the carbonaceous material with a specific surface area of 167 m2/g.


Cite this paper
García-Rosales, G. , Longoria-Gándara, L. , Martínez-Gallegos, S. and González-Juárez, J. (2013) Synthesis and Characterization of Carbon Conditioned with Iron Nanoparticles Using Pineapple-Peel. Advances in Nanoparticles, 2, 384-390. doi: 10.4236/anp.2013.24053.
References
[1]   M. Dickinson and T. B. Scott, “The Application of ZeroValent Iron Nanoparticles for the Remediation of a Uranium-Contaminated Waste Effluent,” Journal of Hazardous Materials, Vol. 178, No. 1-3, 2010, pp. 171-179.
http://dx.doi.org/10.1016/j.jhazmat.2010.01.060

[2]   M. Diao and M. Yao, “Use of Zero-Valent Iron Nanoparticles in Inactivating Microbes,” Water Research, Vol. 43, No. 20, 2009, pp. 5243-5251.
http://dx.doi.org/10.1016/j.watres.2009.08.051

[3]   H.-L. Lien and W. Zhang, “Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 191, No 1-2, 2001, pp. 97-105.
http://dx.doi.org/10.1016/S0927-7757(01)00767-1

[4]   V. Zaspalis, A. Pagana and S. Sklari, “Arsenic Removal from Contaminated Water by Iron Oxide Sorbents and Porous Ceramic Membranes,” Desalination, Vol. 217, No. 1-3, 2007, pp. 167-180.
http://dx.doi.org/10.1016/j.desal.2007.02.011

[5]   X. Zhang, S. Lin, X.-Q. Lu and Z.-L. Chen, “Removal of Pb(II) from Water Using Synthesized Kaolin Supported Nanoscale Zero-Valent Iron,” Chemical Engineering Journal, Vol. 163, No. 3, 2010, pp. 243-248.
http://dx.doi.org/10.1016/j.cej.2010.07.056

[6]   C.-B. Wang and W.-X. Zhang, “Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs,” Environmental Science and Technology, Vol. 31, No. 7, 1997, pp. 2154-2156.
http://dx.doi.org/10.1021/es970039c

[7]   H. Zhu, Y, Jia, X. Wu and H. Wang, “Removal of Arsenic from Water by Supported Nano Zero-Valent Iron on Activated Carbon,” Journal of Hazardous Materials, Vol. 172, No. 2-3, 2009, pp. 1591-1596.
http://dx.doi.org/10.1016/j.jhazmat.2009.08.031

[8]   W. Wang, M. Zhou, Q. Mao, J. Yue and X. Wang, “Novel NaY Zeolite-Supported Nanoscale Zero-Valent Iron as an Efficient Heterogeneous Fenton Catalyst,” Catalysis Communications, Vol. 11, No. 11, 2010, pp. 937-941. http://dx.doi.org/10.1016/j.catcom.2010.04.004

[9]   J. F. González, S. Román, J. M. Encinar and G. Martínez, “Pyrolysis of Various Biomass Residues and Char Utilization for the Production of Activated Carbons,” Journal of Analytical and Applied Pyrolysis, Vol. 85, No. 1-2, 2009, pp. 134-141.
http://dx.doi.org/10.1016/j.jaap.2008.11.035

[10]   J. Hayashi, T. Horikawa, I. Takeda, K. Muroyama and F. N. Ani, “Preparing Activated Carbon from Various Nutshells by Chemical Activation with K2CO3,” Carbon, Vol. 40, No. 13, 2002, pp. 2381-2386.
http://dx.doi.org/10.1016/S0008-6223(02)00118-5

[11]   L. Lorenzen, J. S. J. Van Deventer and W. M. Landi, “Factors Affecting the Mechanism of the Adsorption of Arsenic Species on Activated Carbon,” Minerals Engineering, Vol. 8, No. 4-5, 1995, pp. 557-569.
http://dx.doi.org/10.1016/0892-6875(95)00017-K

[12]   Z. Liu, F.-S. Zhanga and R. Sasai, “Arsenate Removal from Water Using Fe3O4-Loaded Activated Carbon Prepared from Waste Biomass,” Chemical Engineering Journal, Vol. 160, No. 1, 2010, pp. 4-9.
http://dx.doi.org/10.1016/j.cej.2010.03.003

[13]   Z. Liu and F.-S. Zhang, “Nano-Zerovalent Iron Contained Porous Carbons Developed from Waste Biomass for the Adsorption and Dechlorination of PCBs,” Bioresource Technology, Vol. 101, No. 7, 2010, pp. 2562-2564.
http://dx.doi.org/10.1016/j.biortech.2009.11.074

[14]   H. P. Yang, R. Yan, H. P. Chen, D. H. Lee and C. G. Zheng, “Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis,” Fuel, Vol. 88, No. 12-13, 2007, pp. 1781-1788. http://dx.doi.org/10.1016/j.fuel.2006.12.013

[15]   J. A. Conesa, A. Marcilla, J. A. Caballero and R. Font, “Comments on the Validity and Utility of the Different Methods for Kinetic Analysis of Thermogravimetric Data,” Journal of Analytical and Applied Pyrolysis, Vol. 58-59, 2001, pp. 617-633.
http://dx.doi.org/10.1016/S0165-2370(00)00130-3

[16]   J. J. M. órfao, F. J. A. Antunes and J. L. Figueiredo, “Pyrolysis Kinetics of Lignocellulosic Materials: Three Independent Reactions Model,” Fuel, Vol. 78, No. 3, 1999, pp. 349-358.
http://dx.doi.org/10.1016/S0016-2361(98)00156-2

[17]   F. Gutiérrez, A. Rojas Bourillón, H. Dormond, M. Poore and W. Ching-Jones, “Características Nutricionales y Fermentativas de Mezclas de Desechos de Pina y Avícolas,” Agronomía Costarricense, Vol. 27, No. 1, 2003, pp. 79-89.

[18]   P. McKendry, “Energy Production from Biomass (Part 2): Conversion Technologies,” Bioresource Technology, Vol. 83, No. 1, 2002, pp. 47-54.
http://dx.doi.org/10.1016/S0960-8524(01)00119-5

[19]   F. He and D. Zhao, “Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers,” Environmental Science and Technology, Vol. 41, No. 17, 2007, pp. 6216-6221. http://dx.doi.org/10.1021/es0705543

[20]   X. Shen, L. Jiang, Z. Ji, J. Wu and H. Zhou, “Stable Aqueous Dispersions of Graphene Prepared with Hexamethylenetetramine as a Reductant,” Journal of Colloid and Interface Science, Vol. 354, No. 2, 2011, pp. 493-497.
http://dx.doi.org/10.1016/j.jcis.2010.11.037

[21]   X. Zhang, S. Lin, X.-Q. Lu and Z.-L. Chen, “Removal of Pb(II) from Water Using Synthesized Kaolin Supported Nanoscale Zero-Valent Iron,” Chemical Engineering Journal, Vol. 163, No. 3, 2010, pp. 243-248.
http://dx.doi.org/10.1016/j.cej.2010.07.056

[22]   L. B. Hoch, E. J. Mack, B. W. Hydutsky, J. M. Hershman, J. M. Skluzacek and T. E. Mallouk, “Carbothermal Synthesis of Carbon-Supported Nanoscale Zero-Valent Iron Particles for the Remediation of Hexavalent Chromium,” Environmental Science and Technology, Vol. 42, No. 7, 2008, pp. 2600-2605.
http://dx.doi.org/10.1021/es702589u

[23]   A. Kabata-Pendias, “Trace Elements in Soils and Plants,” Taylor and Francis Group, LLC., Boca Raton, 2011.

[24]   P. T. Williams and A. R. Reed, “Pre-Formed Activated Carbon Matting Derived from the Pyrolysis of Biomass Natural Fibre Textile Waste,” Journal of Analytical and Applied Pyrolysis, Vol. 70, No. 2, 2003, pp. 563-577.
http://dx.doi.org/10.1016/S0165-2370(03)00026-3

[25]   H. Tamura, A. Tanaka, K. Mita and R. Furuichi, “Surface Hydroxyl Site Densities on Metal Oxides as a Measure for the Ion-Exchange Capacity,” Journal of Colloid and Interface Science, Vol. 209, No. 1, 1999, pp. 225-231.
http://dx.doi.org/10.1006/jcis.1998.5877

 
 
Top