The Lattice of Fully Invariant Subgroups of the Cotorsion Hull

Show more

References

[1] L. Fuchs, “Infinite Abelian Groups. I,” Academic Press, New York, London, 1970.

[2] L. Fuchs, “Infinite Abelian Groups. II,” Academic Press, New York, London, 1973.

[3] R. Baer, “Type of Elements and Characteristic Subgroups of Abelian Groups,” Proceedings London Mathematical Society, Vol. s2-39, No. 1, 1935, pp. 481-514.

http://dx.doi.org/10.1112/plms/s2-39.1.481

[4] I. Kaplansky, “Infinite Abelian Groups,” The University of Michigan Press, Ann Arbor, 1969.

[5] R. S. Linton, “On Fully Invariant Subgroups of Primary Abelian Groups,” Michigan Mathematical Journal, Vol. 22, No. 3, 1976, pp. 281-284.

http://dx.doi.org/10.1307/mmj/1029001528

[6] J. D. Moore and E. J. Hewett, “On Fully Invariant Subgroups of Abelian p-Groups,” Commentarii Mathematici Universitatis Sancti Pauli, Vol. 20, 1971-1972, pp. 97-106.

[7] R. S. Pierce, “Homomorphisms of Primary Abelian Groups,” In: Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962), Scott, Foresman and Co., Chicago, 1963, pp. 215-310.

[8] A. R. Chekhlov, “On Projective Invariant Subgroups of Abelian Groups,” Vestnik Tomskogo Gosudarstvennogo Universiteta Matematika i Mekhanika, Vol. 2009, No. 1, 2009, pp. 31-36 (in Russian).

[9] R. Gobel, “The Characteristic Subgroups of the Baer-Specker Group,” Mathematische Zeitschrift, Vol. 140, No. 3, 1974, pp. 289-292.

http://dx.doi.org/10.1007/BF01214169

[10] S. Ya. Grinshpon and P. A. Krylov, “Fully invariant Subgroups, Full Transitivity, and Homomorphism Groups of Abelian Groups. Algebra,” Journal of Mathematical Sciences (New York), Vol. 128, No. 3, 2005, pp. 2894-2997.

http://dx.doi.org/10.1007/s10958-005-0245-5

[11] A. Mader, “The Fully Invariant Subgroups of Reduced Algebraically Compact Groups,” Publicationes Mathematicae Debrecen, Vol. 17, 1970, pp. 299-306.

[12] V. M. Misyakov, “On Full Transitivity of Reduced Abelian Groups,” In: Abelian Groups and Modules, No. 11, 12 (Russian), Tomsk State University, Tomsk, 1994, pp. 134-156 (in Russian).

[13] A. I. Moskalenko, “Cotorsion Hull of a Separable Group,” Algebra i Logika, Vol. 28, No. 2, 1989, pp. 207-226 (in Russian); Translation in Algebra and Logic, Vol. 28, No. 2, 1989, pp. 139-151 (1990).

[14] D. K. Harrison, “Infinite Abelian Groups and Homological Methods,” Annals of Mathematics, Vol. 69, No. 2, 1959, pp. 366-391. http://dx.doi.org/10.2307/1970188

[15] S. Bazzoni and L. Salce, “An Independence Result on Cotorsion Theories over Valuation Domains,” Journal of Algebra, Vol. 243, No. 1, 2001, pp. 294-320.

http://dx.doi.org/10.1006/jabr.2001.8800

[16] S. Bazzoni and J. Stóvicek, “Sigma-Cotorsion Modules over Valuation Domains,” Forum Mathematicum, Vol. 21, No. 5, 2009, pp. 893-920.

http://dx.doi.org/10.1515/FORUM.2009.044

[17] R. Gobel, S. Shelah and S. L. Wallutis, “On the Lattice of Cotorsion Theories,” Journal of Algebra, Vol. 238, No, 1, 2001, pp. 292-313.

http://dx.doi.org/10.1006/jabr.2000.8619

[18] M. Hovey, “Cotorsion Pairs, Model Category Structures, and Representation Theory,” Mathematische Zeitschrift, Vol. 241, No. 3, 2002, pp. 553-592.

http://dx.doi.org/10.1007/s00209-002-0431-9

[19] W. May and E. Toubassi, “Endomorphisms of Abelian Groups and the Theorem of Baer and Kaplansky,” Journal of Algebra, Vol. 43, No. 1, 1976, pp. 1-13.

http://dx.doi.org/10.1016/0021-8693(76)90139-3

[20] T. Kemoklidze, “On the Full Transitivity of a Cotorsion Hull,” Georgian Mathematical Journal, Vol. 13, No. 1, 2006, pp.79-84.

[21] T. Kemoklidze, “The Lattice of Fully Invariant Subgroups of a Cotorsion Hull,” Georgian Mathematical Journal, Vol. 16, No. 1, 2009, pp. 89-104.

[22] T. Kemoklidze, “On the Full Transitivity and Fully Invariant Subgroups of Cotorsion Hulls of Separable pGroups,” Journal of Mathematical Sciences (New York), Vol. 155, No. 5, 2008, pp. 748-786.

http://dx.doi.org/10.1007/s10958-008-9240-y